
17 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Lesson 4 (2 - 3 days)

Lesson Overview
Students will learn how to utilize sprits and develop them in AppInventor to build out a more
complex game.

Objectives
Students will understand how sprites are constructed and manipulated through four different
methods.

Activity

Introduce the Ball component as one of two Sprite components in AppInventor that have the

ability to move around on a canvas. The second sprite component is ImageSprite, which is

similar to a ball in that it can be moved around on a canvas, but it is visually represented by a

custom Image that is uploaded by the AppInventor developer.

Explain that there are many ways to make Balls and ImageSprites move, but in this course we'll

discuss the four of them (listed below) that are most applicable to game development. Students

should make notes of the four types as they are going to develop each method.

1) Automatically (using built-in properties)

2) Using buttons

3) Using the AppInventor Clock component

4) Using Accelerometer

Motion Method 1: Automatically

Introduce sprite properties such as Heading, Speed, X, Y, and Interval that are required for

automated motion of the sprite, and show students how to set these properties from the

Properties panel in the Designer view. In order to make the ball move, we will update the ball's x

position as the left and right buttons are pressed. The amount of pixels that we move the ball

each time the buttons are clicked is known as the ball's speed (in the x direction). Create a

simple app where the ball bounces around the screen, using the 'EdgeDetected' event handler and

the 'Bounce' procedure in the blocks editor.

#Code{RED}

Copyright 2013 © Code RED Education LLC

18 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Then, ask the students to replace the ball with an ImageSprite, using an image of their choice

but make it do the same sort of bouncing around using 'edge detected'. The ball should bounce

off each edge if one correctly.

Motion Method 2: Button-controlled ball motion:

Ask students to create an AppInventor project with a single ball on a canvas and left/right

buttons below the canvas, as shown below:

#Code{RED}

Copyright 2013 © Code RED Education LLC

19 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Introduce the concept of variables, and discuss how to define your own, and how to access and

set their value. Then, ask students to create a variable representing the speed of the ball in the x

direction. The blocks code for making the ball move then looks as follows:

Ask students to extend this app for up and down motion controlled by up and down arrows:

#Code{RED}

Copyright 2013 © Code RED Education LLC

20 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Motion Method 3: Using the AppInventor Clock component

Introduce the Clock component, which is a timer that fires every few milliseconds (as specified

by the TimerInterval property, which can be set either in the designer view or in the blocks

editor).

Ask students to create a new project with a Ball, Canvas, and Clock (which will show up below

the screen as a non-visible component, meaning it is not seen in the final app).

#Code{RED}

Copyright 2013 © Code RED Education LLC

21 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

We now make the ball move up a few pixels (as determined by the value of the speed variable)

every time the timer fires. Once the ball reaches the top of the screen, we ask the timer to stop

firing, and we wait for the user to click the 'restart' button. Clicking the restart button causes

the ball to reset its location to the bottom of the screen and turns on the timer once again.

We use this opportunity to teach how to define and call your own procedure, by turning the

'restart' action into its own procedure. The blocks code is shown below:

#Code{RED}

Copyright 2013 © Code RED Education LLC

22 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Motion Method 4: Using the Accelerometer

The Accelerometer is a built-in sensor in Android devices that senses changes in acceleration. Here,

we use the accelerometer to make the ball move left and right as the phone is tilted left and right,

hence avoiding the need for buttons and other forms of tactile input.

If students finish early, ask them to extend the program to also detect acceleration

changes in the y direction (to move the ball up and down):

#Code{RED}

Copyright 2013 © Code RED Education LLC

23 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Extra Credit: Students will note that while the above code works, the motion of the ball is not
smooth. In order to achieve smooth motion, students should use the Clock component in
conjunction with the Accelerometer sensor, following the steps below.

Smooth Motion Step 1: Add a Clock component to the project. In the below screenshots, the

clock is called "smoothMotionClock".

Smooth Motion Step 2: In the blocks code, create variables for speed in the x and y direction,

initialize the clock's timer interval in the Screen's Initialize event, and handle the clock's Timer

event by updating the ball's x and y location by the appropriate speed variables.

#Code{RED}

Copyright 2013 © Code RED Education LLC

24 | I n t r o d u c t i o n t o M o b i l e A p p s M o d u l e

Smooth Motion Step 3: Inside the AccelerometerSensor component's AccelerationChanged event

handler, instead of updating the ball's position as you did in the non-smooth version of this

application, simply set the value of the x and y speed variables. Now, the ball's position will be

updated by the Clock timer and will be unaffected by factors such as how quickly the phone is

tilted, resulting in regular and smooth motion.

#Code{RED}

