
I am assuming you have some experience using App Inventor. If not, you should definitely do the

very basic tutorial.

This is what we want to achieve-

1. You control a bird by tapping anywhere in the screen. When you tap, bird ascends; if you don’t,

bird starts to descend/fall.

2. Your objective is to lead the bird to left or right without bumping on any spikes. If you successfully

take the bird to the left or to the right edge, you make a score. When that happens, bird goes to

opposite direction. This continues until you hit a spike. Let’s first design the interface. Download

the barebone project that already has the UI layout but no blocks. Import it and take a look at the

different components in place. You can change the look and feel however you want later. This is

how mine looks like-

http://www.imagnity.com/tutorials/app-inventor/our-first-app-using-app-inventor/
http://www.imagnity.com/wp-content/uploads/2014/09/OhMySpikes_Barebone.aia
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-UI.png

We have the following components in Screen1:

1. A Canvas component which we renamed to GameCanvas with Height and Width both set to Fill

parent.

2. We have an ImageSprite component to represent our main game object which is a tiny bird. We

named it BirdSprite. The speed property of this sprite is set to 5 meaning 5 pixels.

3. Another image sprite named PlaySprite to represent our play/retry button.

4. SpikesBottom and SpikesUp are also image sprites for spikes on the top and bottom as the

names implied.

5. Spike1, Spike2, Spike3, and Spike4 are image sprites that will be placed in random locations

during the game.

6. A Label component named ScoreLabel to display the score.

7. Four Sound components for playing sound effects. ScoreSound is used when the player makes a

score. FlapSound is when the player taps on the canvas for bird to flap and ascend. DeathSound is

used when the bird bumps on any of the spikes and dies. Finally the ClickSound is for Play/Retry

button click.

8. We do have a TinyDB component named ScoreDB to store the best score.

9. There are four Clock components. MoveClock is used to control how long the bird can fly up

when the player taps the screen. When MoveClock is fired, we stop flying up. MoveClock’s

TimerInterval is set to 300 milliseconds in design view. yClock is to control bird’s location on y-axis

which has an interval set to 0. ContinuousFlapClock is for making the bird flap

nonstop. FlapClock is for making the bird flap once when it jumps. We could actually use one flap

clock but for simplicity sake and avoiding too many blocks by resetting their properties, we used two.

Now, let’s define some variables that we’ll need throughout the game. I will explain what they are for

in a bit.

DB_SCORE_TAG : For saving and reading best score.

STATE_MENU, STATE_READY, STATE_GAME – A game has states. When you are on the menu

screen, ready to start the game, and actually playing the game. These variables are constant

meaning we will not change their values. That is why we used all capital letters to define them.

state – This holds the current state, either of the three states above.

isFalling – When player is not tapping, the bird starts to descend.

score – Current score in the game.

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-Variables1.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-Variables2.png

bestScore – Best score of the player.

headingLeft – Bird’s direction on x-axis, either left or right.

temp – To use within a smaller scope. You can use local variables if you prefer.

isOnLeft – If the obstacles/spikes are currently at the left side on the canvas.

SPIKES_Y_POS – This variable holds a list of lists. We have 4 image sprites (obstacle spikes) that

are placed on either side depending on the direction of the bird. If we want to place the spikes at left,

we can use 0 as the x, if we want to the right, we can use canvas’ width minus spike’s width for x.

Since our obstacles’ x position is either to the left or to the right, all we need are values on y-axis.

We created 10 locations for those sprites by placing them in various positions in design view with

proper gaps in between, we then checked in the device if they look good enough. Then we

copied Y values from design view to SPIKES_Y_POSvariable. Since we have 4 obstacle sprites, we

chose 4 values on y-axis, one for each sprite. This is why each list contains 4 items. First one is for

Sprite 1, 2nd one is for Sprite 2, and so on. You can try and add more or even randomize. Rather

than having a list of lists predefined, you can create an empty list and then later add items to that list

instead. If you are wondering why some of them have -100, it’s because we don’t always want to

show all 4 obstacle sprites. So we placed them off the screen. You can use -30 as each spike is 30

pixels in height. I chose -100 because for some reason it was more visible to my eyes to spot on

Blocks window when I was testing. If you have never worked on lists, now is the time you go through

the in-depth list tutorial.

Let’s initialize/setup different components. Go to Blocks window. Drag the Screen1.Initializeblock

on the Viewer window and do as I did in Screen1.Initialize. You will also have to

create some procedures as shown below:

http://www.imagnity.com/tutorials/app-inventor/list-blocks-on-app-inventor/

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-Initialize.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-SetupHeader.png

Let’s break these down. Screen gets initialized when the app is loaded and we to do the followings

when it does-

1. We want our score label to be visible. So we set its visibility to true. You can do that in design

view too.

2. When we first show the app, we do not show the bird. So it should not be enabled either. You can

also do that in design view. I might have already done that in design view; but I don’t like going back

and forth to check, so redid it.

3. We do not want our clocks to do anything yet so we disabled them which you can also do in

design view.

4. We want our canvas height to be the same as the device height minus the score label’s height

which is 30. We show the best score on the menu screen or how to play the game if the player

haven’t played our game yet.

5. We read the best score form TinyDB using the tag we defined before. If no best score, we get an

empty text because we put nothing on the block “valueIfTagNotThere“. Obviously tag won’t

be there if we haven’t saved any score yet.

6. If we find a best score, we show it. If not, we inform the player how to play this game. You can

create a screen with detailed instructions if you prefer and show that instead.

7. Finally we call three procedures. SetupHeader procedure sets the location of the header in center

in respect to x-axis and a little below from the top of the screen by using its height. If you are not

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-SetupPlayButton.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-GameVisibility.png

sure about this simple math formula on getting the center of two points, google ‘midpoint formula‘.

Header holds nothing but the name of the game which is an image sprite and doesn’t move or

interact. This is why in design view, we disabled that. After we setup its position, we made sure it’s

visible. SetupPlayButton procedure places the play button at the center of the

screen. SetupGameVisibility procedure takes a boolean variable as a parameter. We named the

variable visibility. If it is true, we show game components, otherwise we hide it. The reason we

used not block from Logic drawer for setting the visibility of play button is because when game

starts, we do not want to show the play button but the game items/components. When the game

ends, we want to hide all game components except the play/retry button which is also the same

when our game launches. That is why we call this procedure with a false argument

from Screen1.Initialize, because we want to only show the menu screen’s items, not the game

screen’s items. By the way I am always using “screen” even though there’s only one screen

(Screen1). I am doing that to differentiate when only menu items (Play button, score label) are

visible from game items. Now we have to define what happens when the player presses the play

button.

When user/player taps on the play button, we first play a click sound. Then we setup the game

which I will explain in a bit. We also start our ContinuousFlapClock as we want the bird to

flap continuously. We’ll get back to that too. Here’s the SetupGame procedure-

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-PlayTouched.png

We will discuss the 4 procedure calls in SetupGame later. Let’s first explain what happens at the

beginning. So game is about to start. We want to reset the value of score to 0. Then, we show the

score which we just set to 0. We do that because previously the menu screen might have showed

best score or a tutorial. We change the state to ready state meaning the game is waiting for player’s

first tap to start. We make sure our score label is visible and header is invisible. We want to place

the obstacles randomly. We do not want to start the game with spikes at the left or right all the time,

nor do we want to just alternate. So we pick a number between 1 and 2 inclusive. If system gives

us 1, we set the isOnLeft to true, otherwise false. Now let’s look at the 4 procedures.

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-SetupGame.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-SetupTopBottomSpikes.png

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-SetupPlacements.png

In SetupTopBottomSpikes, we set the X values of both top and bottom sprites to the center on x-

axis using simple midpoint formula. Since the SpikesUp should be at the top, we set its Yto 0; and

for the other one, we set it to the height of the screen so it appears at the bottom. Remember in

canvas, point (0, 0) is on top left of the canvas. In SetupPlacements, we make sure that bird’s

speed is 5. You will know why we had to in a bit. Then we determine where we should put all those 4

obstacle spikes in terms of y-axis. As we do have a list of predefined positions contained

by SPIKES_Y_POS variable, we just need to pick one from the list. So we generate a number

between 1 which is the index of the first item in the list and the size of the list which is 10 as we have

10 items/lists meaning we get a number between 1 and 10inclusive. After that we get the list at index

we just randomly got. We do not want to use the same set of blocks multiple times to get a list item,

we instead created a procedure called GetListItem which we can easily use instead of using the

same set of blocks and make it look too busy-

Since SPIKES_Y_POS is a list of lists, the value of the list is also a list. Now if we want the list that

contains [-100, 140, 210, 365] which is at index 1 of the parent list, we should give GetListItem 1 as

the parentIndex, and then if we want to get the number 210 which is at index 3 of the child list, we

should give 3 as the childIndex. Then we check if we should place the obstacles at left

using isOnLeft variable’s value which we determined in SetupGameprocedure.

Now you might be wondering why are we changing the value of isOnLeft again to opposite. It’s

because SetupGame is called only once when user starts a game but this SetupPlacements will be

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-SetupBirdPosition.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-GetListItem.png

used each time when the player bounces off an edge. If player bounces off the left edge, we need to

put the obstacles at right and vice versa. After that we also change the heading to the opposite of

bird’s current direction at x-axis. Heading set to 0makes the bird move rightward. Also we set

the image that matches the bird’s direction. Since we set isOnLeft to false meaning bird should be

moving rightward, we set their X to right edge (canvas width) minus their width. We put an extra pixel

(+1) because I kind of find the appearance better that way. You do not have to add that 1.

The name of the image “SpikeLeft.png” may confuse you but tiny spikes on that image is pointing to

the left so it should be used when obstacles are placed on the right side. On the else portion, we do

exactly the opposite.

Heading 180 makes the bird move leftward. We set obstacles’ X to -1 but you can set it to 0. I like it

that way. The very same reason why I added 1 when placing them at right.

After calling SetupPlacements, we call SetUpBirdPosition in SetupGame procedure.

In SetupBirdPosition, depending on the heading we set in the SetupPlacements, we change

where the bird should be initially placed when game is in ready state which is actually the opposite

side of where we placed the obstacle spikes. You can use the heading property of the bird if you

prefer rather than using another variable (headingLeft) as I did. But you have to do a comparison

and see if it’s 0 (rightward) or 180 (leftward).

Y value is not dependent on the heading. We just need to make sure we don’t put it too up or too

below where it touches the bottom spike and dies right away. At the end of SetupGame, we

call SetupGameVisibility and pass true as an argument, the opposite of what we did when we

called this procedure from Screen1.Initialize. It’s because this time we want the game

entities/components to be visible and play button to be invisible.

We are in ready state. The bird is supposed to flap continuously, but what exactly makes it flap? If

you recall, in PlaySprite.Touched event, we enabled the ContinuousFlapClock. In design view,

we set this clock’s timer interval to 300 milliseconds. So, once it’s enabled, after every 300

milliseconds, App Inventor will invoke this clock’s Timer event automatically. And this is what we do

when it’s

triggered-

We simply call another procedure that we defined named ChangeImage. This procedure needs to

know the direction of the bird. This is why we enable ContinuousFlapClock after we

call SetupGame. If ChangeImage procedure sees headingLeft is set to true, it then checks if

current image is BirdLeftOne.png, if so it changes it to BirdLeftTwo.png to make the bird appear to

be flapping. If it’s the second image, it changes it to the first one. It does the opposite if

the headingLeft is false. Now, we are waiting for player to tap to start playing. How do we start the

game and control after it starts? Well, we do it whenever there’s a touch on the canvas. App Inventor

calls Screen1.Initialize at the beginning of an app launch, the same way it listens to any touch on

a canvas through GameCanvas.Touched event whenever player touches the canvas.

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-ChangeImage.png

We only care about a user touch when our game is in either ready or game state. When in ready

state and user taps for the first time, we change the state to game state. We stop continuous

flapping of the bird by disabling that clock. We enable yClock. We will see in a bit what it does. We

also enable the bird so it can now move to a direction depending on its current heading. Whenever

there’s a touch, we make the bird jump meaning we change its Yvalue. For moving along x-axis, we

did set bird’s heading; and in design view we also set the speed to be 5. In JumpBird procedure, we

play the flap sound. We set isFalling to false since we are jumping, not falling. We change the

image like we explained for continuous flapping. We enable

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-GameCanvasTouched.png

both MoveClock and FlapClock.

If you recall what I mentioned about the clocks we have at the beginning of this tutorial, you

know MoveClock controls how long the bird can fly up when the player taps the screen. When

MoveClock is fired, we stop flying up and set isFalling to true so the bird will descend. In

FlapClock’s Timer event, we change the current bird’s image and disable the timer as we do not

want it to flap continuously. What makes the bird actually move up or down? Answer is yClock.

Again, yClock is to control bird’s location on y-axis which has an interval set to 0. So, when it’s

enabled, it fires continuously and does

this-

If our bird should fall, we increase its Y value since a Canvas’ (0, 0) position is at top left. If the Y is

equal to the height of the canvas, the bird will be at the bottom. We do the opposite if we are going

up. You might be wondering why didn’t we enable/disable yClock in JumpBirdprocedure instead.

It’s because when we are in game state, we do not intend to disable yClock. The bird is constantly

moving either up or down. Also JumpBird procedure as its name implies should not make the bird

fall too. We are close. The bird jumps when player taps and falls if player doesn’t tap. Now we need

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-MoveFlapTimers.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-yClock.png

to handle what happens when our bird reaches the left or right

edge.

Whenever the bird reaches left or right edge, player makes a score. So we play score sound. We

call SetupPlacements to place 4 spike obstacles on the other side. We explained what this

procedure does a while ago. We add 1 to the score and update score label to display the new score.

Unfortunately we have to make its cuteness die if it bumps on any of the 6 spikes (top, bottom, and 4

obstacles spikes). In order to do that we need to check if it’s colliding with any of them-

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-EdgeReached.png

We will see EndGameState procedure in a bit. For now just think, it’s the end of the game. If bird

collides with either top or bottom spike, we make the bird die right away. For the obstacle spikes, we

give a little leverage. We call isDead procedure. If bird collides with any of the four obstacles, we

check first if it is moving left and not too far (less than middle of the screen), and then we see if it

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-CollidedWith.png
http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-IsDead.png

crossed the obstacle half way through, if it did, we let it live. After it is half way through and then

collides with any other above or below, we don’t kill it either. We increased its speed to hit edge

faster so it doesn’t keep colliding. This is why we had to reset the speed

to 5 in SetupPlacements procedure. We do the similar thing for the right

edge. IsDead returns true if we need to end the game, otherwise returns false.

Unfortunately bird died. Let the world know. Play the death sound. We need to show the menu

screen. This time we will change the PlaySprite’s image to retry image (RetryButton.png). If current

score is higher than the best score if any, we set bestScore to current score. Then we save it to

http://www.imagnity.com/wp-content/uploads/2014/08/OhMySpikes-EndGameState.png

the database. We hide all game components. We disable what’s not visible. We change the state. If

we didn’t play before or didn’t score even 1, we do not have a best score. In that case, we just show

the current score. Otherwise we show both side by side.

If you are still with me and didn’t skip any part of this tutorial, I bet you really are going to make

something awesome someday. Did you realize we just made a game? I applaud your efforts getting

this far.

