

You are a traveler on a journey to reach a goal. You

travel on the ground amid walls, chased by one or

more chasers. The chasers at first move randomly

on the ground, and later, begin to chase based on

your scent. When you move next to the goal, you

win. If you move next to a chaser, you lose.

Created by: Susan Miller, University of Colorado, School of Education

This curricula has been designed as part of the Scalable Games Design project.

It was created using portions of prior work completed by Fred Gluck and Cathy Brand.

Lesson Objective:

 To create a game of the student’s own design where a traveler explores an

unknown world.

Prerequisite Skills:

 Students are presumed to have the

following skills. Return to the Frogger

Lesson Plans for detailed explanations on

these skills.

o Create agents

o Basic agent behavior including:

 Key control

 Random movement

 Ending the game

Computational

Thinking

Patterns:

 Cursor Control

 Collision

 Diffusion

 Hill Climbing

 Polling

Activity Description:

 Part 1: Create a basic world with a Traveler and Chaser

 Part 2: Make the Chaser chase the Traveler

 Part 3: Enhance the game so that the traveler collects more than one goal

Challenge: Ice Arrows: Create ice arrows which can freeze the Chaser

Length of Activity:

 Three to Five 30-45 minute lesson, although

some students may advance more quickly

 Journey

 Page 3

Table of Contents

Teacher Instructions: Part 1 – Basic Game

Student Handout 1: Part I - Basic Game (experienced student)

Student Handout 1A: Part I - Basic Game (new student)

Student Handout 1B: Agent Creation Short Cuts

Teacher Instructions: Part 2 – Making the Chaser Chase the Traveler

Student Handout 2: Part 2 – Making the Chaser Chase the Traveler

Student Handout 2A: Troubleshooting Guide for Journey Part II

Diffusion and Hill Climbing

Teacher Instructions: Part 3 – Making the game harder –

Polling and Broadcast

Student Handout 3: Part 3 – Making the game harder –

Polling and Broadcast

Student Handout 3A: Troubleshooting Guide for Journey Part II

Polling and Broadcast

Student Handout 4A Ice Arrow Challenge Part A

 (Guided Discovery)

Student Handout 4B: Ice Arrow Challenge Part A

 (Direct Instruction)

Student Handout 4C: Ice Arrow Challenge B

 (Guided Discovery)

Student Handout 4D: Ice Arrow Challenge B

 (Direct Instruction)

 Journey (Continued)

 Page 4

Vocabulary/Definitions

Algorithm a set of instructions designed to perform a specific

task.

Amplitude the value associated with an attribute

Attribute an assigned feature of an agent (such as scent)

Brackets method of setting information apart using “[“ and “]”

Broadcast controllers broadcast (or send out) a signal

Chaser the agent that chases the traveler

Collision an event wherein two agents run into each other.

Diffusion the process in which an attribute (in this game, scent)

moves from areas of strong concentration to weak

concentration

Increment to increase by one

Hill Climbing a specific form of searching/seeking technique, or

algorithm, by which the seeking/searching agent uses

information (agent attribute) embedded in the floor.

Local Variable a variable held by a specific agent

Method a set of rules to follow in a specific situation

Parentheses method of setting information apart using “(“ and “)”

Polling the process of contacting and communicating with

each agent

Propagated the spreading of the scent

Randomly to occur in non-systematic ways

Rule Order the order in which rules are placed for each agent

Traveler................ the main character who is searching for goals

 Journey (Continued)

 Page 5

Teacher Instructions: Part 1 – Basic Game

Teaching Suggestions

Task your students with creating a new game. The basic features of the game are as

follows:

You are a traveler on a journey to reach a goal. You travel on the ground amid walls

along with one or more chasers. The chasers move randomly on the ground. When

you move next to the goal, you win. If you move next to a chaser, you lose.

Give students to talk about the game for a minute.

Consider these prompts:

 How is this game similar to Frogger? Dissimilar to Frogger?

 What skills that students learned from Frogger will they need here?

 What agents will they need?

 What ideas do they have about how to get the chaser to move randomly (and,

what does “randomly” mean)?

 What would make the game more challenging? Less challenging?

Once the students have had a few minutes to think through these prompts, provide them

with Handout 1 (or display it for the class) so that they may begin work.

You may have some students who have never worked

with AgentSheets. Use Handout 1A for those students.

 Journey (Continued)

 Page 6

Differentiated Instruction:

This first section is designed to quickly facilitate the students’ creation of the basic game.

Students who need a challenge: Some students with more fluency in programming may

finish this very quickly – be prepared for them to move on to parts 2 and 3.

Students who need more assistance: Other students (especially those with no Frogger

experience) may struggle a bit more. There are two options for differentiated instruction.

Consider the needs of the student and the class as you decide which will work best.

Option 1: Pair a struggling student with an experienced student

Option 2: Provide struggling students with Handout 1A, which provides more

directed instruction steps

Time management issues: While students can be more engaged when they design their

own agents, some students can spend too much time on this design or find it frustrating.

Handout 1B provides block images of each agent as portrayed in this lesson.

Vocabulary for ELL Students: Traveler, Chaser, Randomly, Rule Order, Collision

 Journey

 Page 1

Student Handout 1:

Part I - Basic Game

Initial Story: You are a traveler on a journey to reach a goal. You travel on the ground amid

walls along with one or more chasers. The chasers move randomly on the ground. When you

move next to the goal, you win. If you move next to a chaser, you lose.

Create these Agents:

Traveler Chaser Goal

Ground Wall

Create this initial Worksheet:

 Journey (Continued)

 Page 2

Create the following BEHAVIORS for your agent:

Step 1: Chaser:

Program the chaser to move randomly on the floor.

Step 2: Traveler:

Set up your agent to move with the arrows (cursor control).

Create game ending conditions (collision).

The box below shows how to end the game if your traveler approaches the chaser. Create a

similar rule if your traveler approaches the goal.

 Be SURE to reset the game when it ends.

Step 3: Walls

Add walls to your worksheet. Then, prevent your Traveler from walking through the walls.

Work with the person next to you to figure out how to prevent the Traveler from walking into

a wall. Here is one way to think about it… challenge yourselves to find a different way.

Step 4: Don’t allow the traveler to cheat!

Problem: Traveler can cheat by moving off the game ground. Talk with the person next to you

about where and when this can happen on your worksheet.

Add rules that make a sound for attempted movement off the ground. Note the importance of

rule order for the new rules. Here is an example to prevent the Traveler from moving right off

the worksheet. What other direction limit will you need?

 Journey

 Page 1

Student Handout 1A:

Part I - Basic Game

Initial Story: You are a traveler on a journey to reach a goal. You travel on the ground amid

walls along with one or more chasers. The chasers move randomly on the ground. When you

move next to the goal, you win. If you move next to a chaser, you lose.

Agents:

Traveler Chaser Goal

Ground Wall

Initial Worksheet:

 Journey (Continued)

 Page 2

Step 1 Create Game

Click on the new

game icon (far

left)

Step 2 Name the Game

Name it Journey

and click OK

Step 3 Define Agent

Size

Do not change -

Click OK

Step 4 Create Agent

Click on New

Agent

Name it

Traveler

Click OK

 Journey (Continued)

 Page 3

Step 5 Edit Agent

Click EDIT

DEPICTION

Click CLEAR to

erase the current

image.

Click on

Color> Mask

Color>> White

to make the

white

background

sections see-

through

Step 6 Draw Traveler

Click DONE

Here is an example of one

way to draw him. You can

be creative. If you make a

mistake, use the eraser or

click CLEAR to clear the

whole area.

Step 7 Draw remaining

agents

Chaser Goal Ground

Wall

 Journey (Continued)

 Page 4

Step 8 Make the

workspace

Click

File>>New

Worksheet

Step 9 Make the

worksheet

bigger

Notice it is big,

but not so big

that it fills up

the whole space.

Step 10 Use the tools to

place items on

the worksheet.

Pencil: places

items one at a

time

Filled in

Rectangle:

Places items in

an array.

It is important that you do not draw over an agent with the

Ground agent. This means if you place a Chaser on the

worksheet, do not draw the Ground over it without erasing

the Chaser first.

 Journey (Continued)

 Page 5

This is a good time to save the worksheet!

Step

11

Create

behaviors for

your agents

Read the

explanation

and then

Click

Edit Behavior

The kind of behaviors that we will give to our Agents are called rules.

Rules are made up of an IF-THEN statement. For controlling the

Traveler using the cursor keys, one of the rules we need should be

that “IF the Up key is hit, THEN the Traveler will move up.” Overall

we should have 4 rules, one for each direction (Up, Down, Left,

Right).

Step

12

Create a

behavior

When you

first open this,

it will be

blank. You

are going to

drop and drag

the conditions

(on the left)

and the

actions (on

the right) to

create the

rules.

Take a look at this rule…it says,

IF I click on the up arrow, THEN my traveler will move UP

Create the rules to have the traveler move up, right, left and

down.

NOTE: Each rule has to be separate…use NEW RULE to create

each new rule.

http://sgd.cs.colorado.edu/wiki/If_Then_Statements

 Journey (Continued)

 Page 6

Step

13

Create rule to

end the game

when the

traveler is

next to the

Chaser

Click on

Traveler and

Edit Behavior

Add these

rules

Don’t forget the last action – reset simulation!!!

Step

14

Create rule to

end the game

when the

traveler is

next to the

Goal

No hints here – your turn to figure it out. Use step 13 as a hint.

Don’t forget the last action – reset simulation!!!

Step

15

Program the

Chaser to

move

randomly

Click on the agent

to add behaviors to

that agent

Step

16

Add walls to

your work
sheet

This is a

good time

to save the

worksheet!

Step

17

Prevent your

Traveler from

walking

through walls

Part a)

Add the code

shown

Work with the person next to you to figure out how to prevent

the Traveler from walking into a wall. Here is one way to think

about it… Challenge yourselves to find a different way.

 Click on

the agent to

add

behaviors

 Journey (Continued)

 Page 7

Part b)

Add code for

the remaining

directions

to that agent

Note an important programming point: The two conditions are in

the same box…this is an AND statement. It reads like this:

IF the up arrow is pressed AND the traveller sees ground above him

THEN he moves up

Step

18

Determine

where the

traveler can

cheat

Traveler can cheat by moving off the game ground. Talk with the

person next to you about where this can happen on your worksheet.

Step

19

Stop the

traveler from

cheating

Add rules that make a sound for attempted movement off the ground.

Note the importance of rule order for the new rules. Here is an example

to prevent the Traveler from moving right off the worksheet. What other

direction limit will you need?
 Click on the agent

to add behaviors to

that agent

 Journey

 Page 1

Student Handout 1B:

 Agent Creation short-cuts

 Journey

 Page 1

Teacher Instructions:

Part 2 – Making the Chaser Chase the Traveler

Overview:

In this part of the project, students will change the game to make it harder to win and more

interesting. Instead of the Chaser moving randomly, the Chaser will now actually move toward the

traveler.

Instruction:

Talk to your students about the Chaser.

Consider these prompts:

 Does the chaser really ‘chase’ the traveler? Why or why not?

 Why would we change the game so that he really did chase the traveler?

 How could we change the game so that he could chase the traveler?

[Give students a minute or two to discuss this with the person next to them. Then

solicit their ideas.]

 [Say to your students] Imagine the traveler emits a scent that the Chaser could smell…would that

make it easier for the Chaser to find him? [Give the students an example they can relate

to…bacon cooking in the kitchen, the smell of fresh coffee, etc.]

This YouTube video explains how dogs use scent for search and

rescue

https://www.youtube.com/watch?v=XXXU0uKLWo0

This YouTube video of a MythBusters® segment shows how

quickly sharks will respond to fish blood in a pool…students

may be disappointed to see that the sharks do not respond to

human blood with the same enthusiasm!

https://www.youtube.com/watch?v=gU9CQT-snIo

A more scientific explanation of how to determine if sharks can

smell blood in the water.

https://www.youtube.com/watch?v=uqv9EmfkkGE

Any of these videos can
be used with the class

to provide different
views of how diffusion

of scent and
subsequent “hill-

climbing” actions are
used by different

animals

https://www.youtube.com/watch?v=XXXU0uKLWo0
https://www.youtube.com/watch?v=gU9CQT-snIo
https://www.youtube.com/watch?v=uqv9EmfkkGE

 Journey (Continued)

 Page 2

Explain: In Part I of this project, the Chaser agent simply moved around randomly on the

ground. In this next phase of the design, the Chaser will intelligently seek the Traveler agent using

a computational thinking pattern called “hill climbing.

Imagine the traveler agent emits a scent. Hill climbing is an algorithm to find the direction in which

the scent is strongest. The scent will be propagated by the ground agents using a computational

thinking pattern called “diffusion.” Diffusion is a fundamental physical process by which matter

moves down a gradient from highest to lowest concentrations. The closer to the source of the scent,

the greater its amplitude.

Pass out Student Handout 2

Differentiated Instruction:

Note that there are many vocabulary words in this lesson that may be new for your

students. Take time to define those words. Using the words in context often will

reinforce their meaning for the students.

Students who need a challenge: Some students with more fluency in programming may

finish this very quickly – be prepared for them to move on to part 3.

Students who need more assistance: Other students (especially those with no Frogger

experience) may struggle a bit more. Pairing the student with an experienced student

should alleviate many problems.

Vocabulary for ELL Students: Algorithm, propagated, attribute, local variable,

diffusion, amplitude, method, parentheses, brackets

 Journey

 Page 1

Student Handout 2

Part 2 – Making the Chaser Chase the Traveler

So far, your Chaser just moves randomly…he doesn’t actually chase the traveler, does he? That’s

about to change!

The chaser will intelligently seek the traveler agent using a computational thinking pattern called

“seeking.” In this instance, we will use a specific method of seeking called hill climbing. Imagine

the traveler agent emits a scent. Hill climbing is a procedure or algorithm to find the direction in

which the scent is strongest.

The scent will spread out or be propagated by the ground agents using a computational thinking

pattern called “diffusion.” Diffusion is a fundamental physical process by which matter moves from

areas of highest concentration to areas of lowest concentrations. The closer to the source of the scent,

the greater its amplitude.

This phase of the project introduces the concept of an “agent attribute,” which is unique

information that is stored within each occurrence of an agent. Computer scientists call this attribute a

local variable.

Step 1:

First, let’s make sure our traveler gives off a scent. To do this, we need to set an attribute “s” (We

have given the arbitrary name of the agent attribute “s” for scent) for the traveler.

This rule says to the Traveler, “If you aren’t doing anything else, leave a scent at level 1000 on the

ground.”

This rule should be AFTER all the other rules for the Traveler,

at the end of the list.

Step 2:

Now, since the scent is diffusing, or spreading out, we need to find the average of the scent from the

area around that piece of ground. Think of it as the smells are coming in from the North, South, East

and West. The smell in the center, then, is the average of these four smells. How will you create that

programmatically?

 Journey (Continued)

 Page 2

The ground agent will have the behavior below; the single action is to calculate and store the

average of the four surrounding agents’ agent attributes. Remember, you used the arbitrary name of

the agent attribute “s” (for scent).

The “set” action sets each ground agent’s attribute “s” to the average of the

attributes in the agents above, below, and on each side:

s = 0.25*(s[up]+s[down]+s[right]+s[left])

Match both the parentheses “(” and the brackets “[” as shown in the equation.

Step 3:

For the Chaser to know which way to walk, he has to determine

where the scent is the strongest. If this were real life, he would

smell up, smell down, smell left and smell right. Wherever the

smell was strongest, he would walk in that direction. We need to

program the Chaser to do this.

We will create a METHOD for the Chaser to follow a set of rules.

A METHOD is like a set
of rules to follow in a

specific situation. You
can create a METHOD

by clicking “New
Method” at the
bottom of the

behavior box for the
Chaser.

Why do we
multiply by 0.25?

When you find the average
of a set of numbers, you add

them up and divide by the
number of numbers.

In this case, dividing by 4 is
the same as multiplying by

0.25

 Journey (Continued)

 Page 3

Take a look at the programming below. Here’s what it says…

ONCE EVERY 0.5 seconds, follow the Navigate procedure.

IF the smell above you is greater than or equal to any of the other smells in different directions

(down, left or right), THEN move up.

Now, add the rest of the rules so that the Chaser knows what to do if the smell down (s[down])

is greater…What if the smell to the left is greater? What about the smell to the right?

Run your game to see if the
Chaser chases the Traveler! If it
isn’t working, it’s time to do
some troubleshooting.

Check the following:
o Location of the rules
o Use of Method
o Use of parentheses

and brackets

 Journey

 Page 1

Student Handout:

Troubleshooting Guide for Journey Part II

Diffusion and Hill Climbing

Step 1:

To determine what is happening in your game, it is sometimes helpful to look at the agent attributes.

On your worksheet, click run and then click stop. Do not reset at this point. Your traveler has now

‘left his scent’ on the ground. You can see his scent (the value of s) by clicking anywhere on the

ground and then on Tools>>Agent Attributes

A box will appear that lists the attribute value for that agent. You can see it in the box below. In this

box is the value of the scent to the left of this Chaser. By

checking the attributes of the four boxes around the Chaser

(up, down, left and right) and then running the game again,

you can see if your Chaser is doing what you expected him to

do. If he isn’t, go back and check your rules and methods.

Some things to consider:

 Spelling

 Parentheses/Brackets

 Rule Order

 Journey

 Page 2

Teacher Instructions

Part 3 – Making the game harder – Polling and

Broadcast

Background:

In a classroom, when students are working on an assignment, teachers regularly ‘poll’ the room to

see if everyone is done yet. S/He does this by asking students to raise their hand if they are still

working. If no one raises his/her hand, the teacher knows everyone is done. Once everyone is done,

the assignment is finished. Students will use this same concept to change their game to make it more

challenging.

Introduction to students:

Using the example of the classroom, guide your students through a discussion of how to poll for

answers. Now, tell them they are going to use this same concept to change their game. This time,

the game looks like this:

Rather than standing by the goal to win, the traveler will find there are many more goals to

collect. Now, in order to win, the traveler will run around and pick up all of the goals before

being caught by a chaser.

Give students a couple of minutes to discuss this programming activity.

Consider these prompts:

 Who will poll (look to see if there are still more goals to be collected)

 What stops the game?

 What steps (code) will change?

 How would the worksheet change?

 [Give students a minute or two to discuss this with the person next to them. Then

solicit their ideas.]

Students will struggle with the idea of who polls. Introduce the idea of a controller, an agent that is

responsible for tracking the number of goals left on the worksheet. Remind the students that they

should take time to think through each programming step so they can use these skills later.

Hand out worksheet 3

 Journey (Continued)

 Page 3

Differentiated Instruction:

Students who need a challenge: Some students with more fluency in programming may

finish this very quickly – be prepared for them to move on to the challenge.

Students who need more assistance: Other students (especially those with no Frogger

experience) may struggle a bit more. Pairing the student with an experienced student

should alleviate many problems.

Note that this is a challenging lesson for students – plan extra time and

additional help from more experienced students.

Vocabulary for ELL Students: polling, broadcast, increment

 Journey

 Page 1

Student Handout 3

Part 3:

Making the game harder – Polling and Broadcast

In this enhancement to the Journey project, the Traveler must “collect” – that is get next to – multiple

goals in order to win. The game does not end until all of the goals are reached.

To accomplish this, we introduce the concept of a SIMULATION PROPERTIES, which are bits of

information that are shared among all agents in a project.

We create a new agent, the “Controller” to manage the process of polling the goals to determine

when they are all “collected”; that is, when there are none left on the worksheet. Finally, we must

change the behavior of the traveler agent so that it no longer declares the game is over when it gets

next to a goal.

Step 1: Remove the rule from the Traveler that the game is over when next to the goal.

Highlight the rule by clicking on the bar

between the condition and action. Then

press the delete button on your keyboard.

Step 2: Create a Controller agent

Create a Controller agent. Set the agent on your worksheet. The agent does not have to

be in the active part of the worksheet – he can be on the white space if you’d like.

 Journey (Continued)

 Page 2

Step 3: Counting up the goals to see if you won

Imagine this conversation…

That’s what this programming will look like. The Controller will say, “Goal count starts at zero”

(like the classroom, no hands are up when the teacher asks who is still working). When the goals

‘hear’ the Controller ask (broadcast) the question, the goals respond back (raise their hands). The

controller counts the goals. If the answer is more than zero, nothing happens and the game

continues. If the answer is zero (meaning that there are no remaining goals on the board), the game

ends.

First, we need to create a simulation property called ‘goals’. This

property is the count of the hands. To do this, go to Tools>>Simulation

Properties>>New. Type in goals and click Save.

To refer to this property, we use

the symbol @. (This is similar to

how we use the hashtag to tag

posts, like #simulation.)

Therefore, when we refer to the

goals, we type @goals.

The teacher has given an assignment to the class and wants to know if
everyone is finished. She says to the class, “Put your hand up if you are still
working.” Hands go up. She counts them – there are five students still
working. “Okay, put your hands down and keep working.”

A few minutes later, she does it again. She says to the class, “Put your hand
up if you are still working.” Hands go up. She counts them – there are two
students still working. “Okay, put your hands down and keep working.”

A few minutes later, she does it again. She says to the class, “Put your hand
up if you are still working.” This time, no hands go up. “Everyone is done,
put your books away”

 Journey (Continued)

 Page 3

There are three parts to the

Controller behavior.

Part 1: Set the number of goals to

zero. (this is like the teacher saying

“hands down”)

Part 2: Ask the goals

(broadcast/polling) if they are still

on the board

Part 3: Use the count of the goals to

see if the game is done.

Your behavior for the Controller should look like

this:

How do Simulation Properties
Work?

In the “While Running” method,
the control first sets the simulation
property “@goals” to zero. Then it
broadcasts a signal to all goals. This
broadcast is called polling. Finally,
the controller calls upon the
“check_won” method to determine
whether the game is won. This is
true only if there are no goals
remaining, which is determined by
the @goals simulation property
being zero. If any goals are left, we
will see that this simulation
property will be greater than zero

 Journey (Continued)

 Page 4

Goal behavior changes: There are two behavior changes required for the goal agent.

 The first step is to have the goal be collected by the traveler. We can simulate this by

erasing the goal when the Traveler gets next to it.

 The second behavior change for the goal agent is to respond to the “poll” (broadcast) called

check_in from the Controller, to update the @goals simulation property.

This second change is in the form of a separate method; it is not part of the

continually running “While Running” method, since it only runs when called by the

controller agent.

During check_in, each remaining goal agent will

increase (or increment) the @goals simulation

property. If no goal agents remain, then the @goals

property will be zero, which the controller agent will

detect and declare the game won.

Before you test this, check your
worksheet: We have placed one

Controller on the bottom left of the
worksheet. Note that the Controller

agent does not need to be in the
active area of the worksheet, since it

does not interact directly with any
agents.

In addition, we have placed several

additional goals on the worksheet, so
that the traveler must “collect” – that

is, get next to -- each of them in
order to win the game.

You can also add more Chasers to

make the game more difficult!

 Journey

 Page 1

Student Handout:

Troubleshooting Guide for Journey Part III

Polling and Broadcast

Common Problems:

1. Is your Controller agent on the worksheet?

2. Did you type in @goals where you needed to?

3. Do you refer to the correct agents in each step?

More detailed troubleshooting:

To determine what is happening in your game, it is sometimes helpful to look at what the simulation

property is doing. To do this, have your worksheet open as well as the simulation property box

(Tools>>Simulation Property). Click on the property, and then click on Plot. It will look like this:

Click Plot Property ‘goals’. Change the plot to graph between 0 and the total number of goals on

your worksheet

This will provide a graph that shows you what’s happening ‘behind the scenes’ while you play the

game. This information will help you determine where a mistake may be. For example, if the goals

never goes above 0, there is a problem with the method ‘check_in’ or the broadcast. If the goals goes

to zero but the game doesn’t end, there is a problem with the game ending commands with the

controller.

 Journey

 Page 1

End of Unit Review Sheet - Journey

A) The main computational thinking patterns we reviewed were:

1) Cursor Control: intentionally moving an agent.

a. Using keyboard keys to move an agent.

b. Example is moving the Traveler.

2) Absorb: deleting agents on the screen.

a. Use the “Erase” action in Agent Sheets.

b. Examples are erasing the goals.

3) Collision: when 2 agents collide (run into each other).

a. Use the “See” condition

b. Use the “Stacked” condition, OR

c. Use the “Next to” condition.

d. Examples are the collecting goals and winning the game.

B) The main NEW computational thinking patterns we learned were:

1) Diffusion: spreading the scent (smell) of an agent across a medium (like the

background). We use an agent attribute (like s = 1000) on the agent with the

smell, and we diffuse the smell by setting the attribute on the background using

the average of the 4 smells around it; like the smell on the city background,

s = (s[left]+s[right]+s[top]+s[bottom])/4.

2) Hill Climbing: following the highest scent. It only works if there is diffusion

done with it, so they go hand in hand. Example is the method we created on the

chaser to follow the highest value of the scent “s” around him.

3) Broadcasting: is when we “shout out” to all agents of a certain type requesting

them to execute a specific method.

a. Use the “broadcast” action in Agent Sheets.

b. Example is the broadcast to the Controller - the method check_in” to

check in with the goals to see if they are still there.

C) Other concepts we covered in Agent Sheets are:

1) Troubleshooting the simulation, and considering rule order.

2) Using sounds and messages in the game.

3) Timing our actions using the “Once every” condition.

 Journey

 Page 1

Student Handout 4A:

Ice Arrows 1.0 Challenge

Before your start this challenge:

You must have a complete basic journey game with a Traveler who wins if s/he

reaches the treasure and Chasers who either move randomly or chase the

Traveler. The Traveler loses if a Chaser gets too close. The worksheet should have

walls that the Traveler and Chasers can not cross.

Description of the Challenge:

 Your Traveler shoots ice arrows up towards the top of the world

when the space bar is typed.

 A Chaser hit by a moving ice arrow freezes and cannot move.

 A frozen Chaser hit by a moving ice arrow unfreezes and can move again.

 Ice arrows should not go through walls or stack up in piles.

Gamelet Design Activity:
In the description above, circle nouns to identify the agents and underline the verbs to identify

actions associated with each agent. Mark adjectives to identify new shapes for an agent.

Create new agent: ice arrow

 draw an upward facing ice arrow

Create new depiction (image): frozen Chaser

 select your chaser agent

 click on the New Depiction button at the bottom of the gallery window

 create the frozen Chaser

 The Chaser’s depiction stores its state: frozen or unfrozen.

Create New Rules:

Traveler

 Add a rule so that an ice arrow is generated (fired upwards) when the space bar is hit.

 Where should this rule appear?

o Above or below the win rule?

o Above or below the move rules?

Remember that special cases appear above default behavior!

Ice Arrow 1.0

Create arrows that
freeze and unfreeze

the Chasers

 Journey (Continued)

 Page 2

Ice Arrow

 Add a rule that makes the ice arrow move up.

 Add a rule so that your ice arrows are ABSORBED BY (do not go through) the walls.

 Add rules so that the ice arrow “hits” the Chaser right above it using the Make action:

This action should be read as “make the agent above me check the rules in its “hit”

method”. The ice arrow must “hit” both frozen and unfrozen chasers!

o In what order should these rules appear in the ice arrow while running method?

o Order your rules with special cases at the top and default behavior at the bottom

Chaser

 Use the New Method button at the bottom of the Chaser behavior window to add a

method named “hit”. The method name must exactly match the name in the ice arrow

Make action!

 Add a rule to the hit method that freezes an unfrozen Chaser.

 Add a rule to the hit method that unfreezes a frozen Chaser.

Does the rule order matter?

Test your new feature

 If the agents’ behavior does not match the changes you have made, click on each agent’s

apply button.

 If your Chaser does not stay frozen, add an action to the ice arrow rule so that the ice

arrow is erased as soon as it hits the Chaser. Otherwise, the arrow will freeze and then

unfreeze the Chaser. Use the Erase action, , which should be read “Erase

me”.

 Do frozen Chasers move? Add a condition to the Chaser rule move rule so that only

unfrozen Chasers can move.

 Does the Traveler die and end the game when s/he is next to a frozen Chaser? Check

whether the Traveler is next to 1 or more unfrozen Chasers.

 Does the ice arrow freeze or unfreeze a chaser on the other side of a wall? Reorder your

rules so that the rule that erases an arrow over a wall comes first and has priority over

hitting a Chaser right above it in the square next to the wall. Then the ice arrow will be

erased before it can do anything to a Chaser.

 If your ice arrow does not move across the worksheet, check whether your game is

running so fast that the arrow movement is not visible and consider adding a timer

condition to the if side of your ice arrow move rule so that the ice arrow moves slowly

enough to be visible.

 Do your arrows stack up on the edge of the worksheet? Add walls along the edge of the

worksheet to absorb arrows.

 Journey (Continued)

 Page 3

Student Handout 4B:

Ice Arrows 1.0 Challenge Tutorial

Before your start this challenge:

You must have a complete basic journey game with a Traveler who wins if s/he

reaches the treasure and Chasers who either move randomly or chase the

Traveler. The Traveler loses if a Chaser gets too close. The worksheet should have

walls that the Traveler and Chasers can not cross.

Design Challenge:

Your Traveler shoots ice arrows up towards the top of the world when

the space bar is typed. A Chaser hit by an ice arrow freezes and can’t

move or kill the Traveler. A frozen Chaser hit by an ice arrow unfreezes

and moves again. Ice arrows do not go through walls or pile up on the

worksheet.

Gamelet Design Activity:
Circle nouns to identify the agents and underline the verbs to identify actions associated with

each agent. Mark adjectives to identify new shapes for an agent.

Create new agent: ice arrow

 Use the New Agent button at the bottom of the gallery window.

 Draw an upward facing ice arrow

Create new depiction: frozen Chaser

 Select your Chaser by clicking on it.

 Click on the New Depiction button at the bottom of the agent gallery window.

 Draw a frozen Chaser! Make sure that it looks different enough from a regular Chaser

that you can identify from a small picture.

 The Chaser’s depiction stores its state: frozen or unfrozen.

Ice Arrow 1.0

Create arrows that
freeze and unfreeze

the Chasers

 Journey (Continued)

 Page 4

Create New Rules:

Traveler

 Add a rule so that an ice arrow is fired upwards when the space bar is hit. (generate CTP)

 Where should this rule appear? Above or below the win rule? Above or below the move

rules? Remember that special cases appear above default behavior. Put this rule below

the win rule and the lose rule if you have it in this agent. If you put it above the movement

rules, you will make the Traveler fire arrows rather than move if both the space bar and

arrow keys are typed simultaneously

Ice Arrow

 Add a rule that makes the ice arrow move up.

 Add a rule so that your ice arrows do not go through walls. (absorb CTP)

 Add rules so that the ice arrow “hits” the Chaser right above it using the Make action.

This Make action should be read as “make the agent above me check the rules in its “Hit”

method”. The ice arrow must “hit” both frozen and unfrozen chasers!

 In what order should these rules appear in the ice arrow while running method? Order

your rules with special cases at the top and default behavior at the bottom. You can put

the Hit rules first, followed by the wall rule. The move up rule should appear last.

 Journey (Continued)

 Page 5

Chaser

 Use the New Method button at the bottom of the Chaser behavior window to add a method
named “hit”. The method name must exactly match the name in the ice arrow Make action!

 Add a rule to the hit method that freezes an unfrozen Chaser.

 Add a rule to the hit method that unfreezes a frozen Chaser.

 Does the rule order matter? Not in this case. Both rules are almost equally likely to happen.

Test your new feature

 If the agents’ behavior does not match the changes you have made, click on each agent’s
apply button.

 If your Chaser does not stay frozen, add an action to the ice arrow rule so that the ice arrow
is erased as soon as it hits the Chaser. Otherwise, the arrow will freeze and then unfreeze the

Chaser. Use the Erase action, , which should be read as “Erase me”.

 Do frozen Chasers move? Add a condition to the Chaser rule move rule so that only

unfrozen Chasers can move.

 Journey (Continued)

 Page 6

 If the Traveler dies and ends the game when s/he is close to a frozen Chaser, check whether
the Traveler is next to an unfrozen Chaser.

 If your ice arrow does not move across the worksheet, check whether your game is running

so fast that the arrow movement is not visible and consider adding a timer condition to the
if side of your ice arrow move rule so that the ice arrow moves slowly enough to be visible.

 Does the ice arrow freeze or unfreeze a chaser on the other side of a wall? Reorder your

rules so that the rule that erases an ice arrow over a wall comes first and has priority over
hitting a Chaser right above it in the square next to the wall. Then the ice arrow will be
erased before it can do anything to a Chaser.

 Do your arrows stack up on the edge of the worksheet? Add walls along the upper edge of
the worksheet to absorb arrows.

 Journey

 Page 1

Student Handout 4C:

Ice Arrows 2.0 Challenge

Before your start this challenge:

Ice Arrows 1.0 must be completed and tested! The Traveler should

shoot ice arrows upwards that freeze unfrozen Chasers and unfreeze

frozen Chasers.

Design Challenge: The Traveler turns to face whichever direction s/he is
moving: up, down, left or right. Make the Traveler fire ice arrows at the
Chasers in whichever direction the Traveler is facing. Ice arrows will move
in the direction that they are fired: up, down, left or right.

Gamelet Design Activity: read the challenge and identify the new depictions that must be added to
each agent.

Create New Depictions
Ice Arrow: Add new depictions so that the ice arrow moves point-first in all 4 directions

 Select the ice arrow agent and click on the New Depiction button at the bottom of the
gallery window and draw a new depiction. Or go to the Gallery menu (to the right of the
word AgentSheets) and find the Duplicate Depiction option. Pick the 3 different rotations of
your upwards-facing ice arrow off the list of choices.

 Make sure to make them large enough and different enough that you can identify them from
a small picture.

 Make an up-facing arrow, a down-facing arrow, a left-facing arrow and a right-facing arrow.

 The ice arrow’s depiction stores the ice arrow’s state: which direction it moves.

Traveler: Add new depictions to the Traveler so s/he faces in the direction s/he is moving:

 The direction that the Traveler faces determines which ice arrow will be generated.

 The Traveler’s depiction stores the Traveler’s state: which way s/he is facing.

 Go to the Gallery menu (to the right of the word AgentSheets) and find the Duplicate
Depiction option. Find the 3 different rotations of your Traveler on the list of choices. You
should have an up-facing Traveler, a down-facing Traveler, a left-facing Traveler and a right-
facing Traveler when you are done.

Create New Rules for the Traveler:
Edit the Traveler’s rules so the depiction changes each time the Traveler moves a different direction:

 Add an action to each of the Traveler’s move rules so that the Traveler’s depiction changes
to match the direction of movement. For example, typing the left arrow key changes the
Traveler’s depiction to a left-facing depiction and the Traveler moves one square left.

Ice Arrow 2.0

Shoot ice arrows
in all directions

 Journey (Continued)

 Page 2

Change the Traveler’s rule to fire the ice arrow:

 Use a method to decide which direction the arrow should be fired because now there are 4
possibilities to choose from.

 Remove the action from the rule with the key = spacebar condition and replace it with

 which should be read as “make me do the method named
FireArrow”. The dot means “me”.

Create the FireArrow method in the Traveler’s rule window and add 4 rules to it:

 Click on the New Method button at the bottom of the Traveler’s rule window.

 Edit the method name so it exactly matches the name in the Make action!

 Make the first rule by adding a condition that checks which way the Traveler is facing and
then adding an action to generate a new ice arrow facing the same way.

 You may either generate the new ice arrow right on top of the Traveler by using the dot or
make it appear next to the Traveler by editing the dot to be an arrow facing the same way as
the Traveler.

 Duplicate this rule 3 times and edit the duplicated rules so that they generate new ice arrows
in the other 3 directions.

Create New Rules for the Ice Arrow:
Change the Ice Arrow’s movement rule so that it calls a method with rules that check which way the arrow should
move:

 Change the original up-arrow move rule in the ice arrow while-running method by removing

the move action and adding this action: which means “make
me do the method named Fly”.

 Add a timer condition to the if side of this rule to control how rapidly the arrow moves.
Make it move slowly enough to be visible!

Create the fly method and add 4 rules to it so that the ice arrow continues to move in the direction its point faces:

 Click on the New Method button at the bottom of the Ice Arrow’s rule window.

 Edit the method name so it exactly matches the name in the Make action.

 Create the first move rule by adding a condition that checks what the ice arrow looks like
and adding an action that makes it move in the matching direction. For example, the up-
arrow should move up.

 Duplicate the first rule 3 times and edit each of these rules so that the ice arrow can move in
the other 3 directions.

Edit the ice arrow rules so that each Ice Arrow depiction can freeze or unfreeze a Chaser:

 Change the hit rules in the while running method so that you have two rules which detect
when an ice arrow is near an unfrozen Chaser and when it is near a frozen Chaser. In each
rule, use the Make action to make the ice arrow do a new method, HitChaser:

.

 Journey (Continued)

 Page 3

 The HitChaser method rules will decide which way the ice arrow is facing and where the
Chaser is relative to the ice arrow. Once the HitChaser rule has checked the ice arrow
depiction, it can send a Hit message to the Chaser in front of the ice arrow point so that it
either freezes or unfreezes, depending on its state.

 For example, if the ice arrow is a downwards-facing ice arrow, it will send a Hit message to

the Chaser below it: .

 Make 3 more rules in the HitChaser method to detect the other 3 ice arrow depictions and
send messages to Chasers above, left or right of the ice arrow.

 Why did we create the HitChaser method? The logic of what happens when an ice arrow is
next to a Chaser is the same whether the Chaser is frozen or unfrozen so we can create a
single set of rules in HitChaser that will cover all 4 ice arrow depiction possibilities. The 2
rules in the main ice arrow while-running method make sure that both frozen and unfrozen
Chasers can be hit by ice arrows.

Testing

 If the agents’ behavior does not match the changes you have made, click on each agent’s
apply button.

 Test that your Traveler can fire arrows in all 4 directions.

 Do ice arrows build up on the edges of your worksheet? Rearrange your walls to absorb
them.

 If you have an arrow that does not move, check that the depiction in the New action in the
Traveler’s rules matches the depiction in the Move action in the ice arrow’s rules.

 If you get error messages from other agents on the worksheet saying that they do not know
how to respond to a “Hit” message, you must change the HitChaser rules to test that the ice
arrow is about to hit a Chaser and not some other agent. Add a condition that checks for the
Chaser agent by name rather than image to each HitChaser rule. Here is the condition that

must be added to the upwards-facing ice arrow rule:

 If your Chaser is not frozen by a direct hit, the problem may be that the ice arrow is next to
the Chaser and unfreezes it immediately after freezing it. How can you guarantee that an ice
arrow will not cause the Chaser to change rapidly back to unfrozen? Add an “Erase me”

action, , to each of the HitChaser rules so that the ice arrow sends a Hit
message to the Chaser and instantly disappears.

 Now test that your Traveler can shoot in all 4 directions and can freeze and unfreeze a
Chaser with all 4 ice arrows. You may need to move the Traveler and the Chaser into
position in order to test each direction.

 Journey

 Page 1

Student Handout 4D:

Ice Arrows 2.0 Challenge Tutorial

Before your start this challenge:

Ice Arrows 1.0 must be completed and tested! The Traveler should

shoot ice arrows upwards that freeze unfrozen Chasers and unfreeze

frozen Chasers.

Create New Depictions
Ice Arrow: Add new depictions so that the ice arrow moves point-first in all 4 directions

 Select the ice arrow agent and click on the New Depiction button
at the bottom of the gallery window and draw a new depiction. Or
go to the Gallery menu (to the right of the word AgentSheets) and find the Duplicate
Depiction option. Pick the 3 different rotations of your upwards-facing ice arrow off the list
of choices.

 Make sure to make them large enough and different enough that you can identify them from
a small picture.

 Make an up-facing arrow, a down-facing arrow, a left-facing arrow and a right-facing arrow.

 The ice arrow’s depiction stores the ice arrow’s state: which direction it moves.

Traveler: Add new depictions to the Traveler so s/he faces in the direction s/he is moving:

 The direction that the Traveler faces determines which ice arrow will be generated.

 The Traveler’s depiction stores the Traveler’s state: which way s/he is facing.

 Go to the Gallery menu (to the right of the word AgentSheets) and find the Duplicate
Depiction option. Find the 3 different rotations of your Traveler on the list of choices. You
should have an up-facing Traveler, a down-facing Traveler, a left-facing Traveler and a right-
facing Traveler when you are done.

Create New Rules for the Traveler:
Edit the Traveler’s rules so the depiction changes each time the Traveler moves a different direction:

 Add an action to each of the Traveler’s move rules so that the Traveler’s depiction changes
to match the direction of movement. For example, typing the left arrow key changes the
Traveler’s depiction to a left-facing depiction and the Traveler moves one square left. The
Change action should be read as “Change me (the dot) to the left-facing Traveler depiction”.

Ice Arrow

Shoot ice arrows
in all directions

 Journey (Continued)

 Page 2

Change the Traveler’s rule to fire the ice arrow:

 Use a method to decide which direction the arrow should be fired because now there are 4
possibilities to choose from.

 Remove the action from the rule with the key = spacebar condition and replace it with

 which should be read as “make me do the method named
FireArrow”. The dot means “me”. The rule looks as follows:

Create the FireArrow method in the Traveler’s rule window and add 4 rules to it:

 Click on the New Method button at the bottom of the Traveler’s rule window.

 Edit the method name so it exactly matches the name in the Make action!

 Make the first rule by adding a condition that checks which way the Traveler is facing and
then adding an action to generate a new ice arrow facing the same way.

 You may either generate the new ice arrow right on top of the Traveler by using the dot or
make it appear next to the Traveler by editing the dot to be an arrow facing the same way as
the Traveler.

 Duplicate this rule 3 times and edit the duplicated rules so that they generate new ice arrows
in the other 3 directions.

Create New Rules for the Ice Arrow:
Change the Ice Arrow’s movement rule so that it calls a method with rules that check which way the arrow should
move:

 Journey (Continued)

 Page 3

 Change the original up-arrow move rule in the ice arrow while-running method by removing

the move action and adding this action: which means
“make me do the method named Fly”.

 Add a timer condition to the if side of this rule to control how rapidly the arrow moves.
Make it move slowly enough to be visible! The rule should look as follows:

Create the fly method and add 4 rules to it so that the ice arrow continues to move in the direction its point faces:

 Click on the New Method button at the bottom of the Ice Arrow’s rule window.

 Edit the method name so it exactly matches the name in the Make action.

 Create the first move rule by adding a condition that checks what the ice arrow looks like
and adding an action that makes it move in the matching direction. For example, the up-
arrow should move up.

 Duplicate the first rule 3 times and edit each of these rules so that the ice arrow can move in
the other 3 directions.

Edit the ice arrow rules so that each Ice Arrow depiction can freeze or unfreeze a Chaser:

 Change the hit rules in the while running method so that you have two rules which detect
when an ice arrow is near an unfrozen Chaser and when it is near a frozen Chaser. In each
rule, use the Make action to make the ice arrow do a new method, HitChaser. The rules

 Journey (Continued)

 Page 4

should look as follows:

 The HitChaser method rules will decide which way the ice arrow is facing and where the

Chaser is relative to the ice arrow. Once the HitChaser rule has checked the ice arrow
depiction, it can send a Hit message to the Chaser in front of the ice arrow point so that it
either freezes or unfreezes, depending on its state.

 The first rule in HitChaser looks as follows:

 Make 3 more rules in the HitChaser method to detect the other 3 ice arrow depictions and

send messages to Chasers below, left or right of the ice arrow.

 Why did we create the HitChaser method? The logic of what happens when an ice arrow is
next to a Chaser is the same whether the Chaser is frozen or unfrozen so we can create a
single set of rules in HitChaser that will cover all 4 ice arrow depiction possibilities. The 2
rules in the main ice arrow while-running method make sure that both frozen and unfrozen
Chasers can be hit by ice arrows.

Testing

 If the agents’ behavior does not match the changes you have made, click on each agent’s
apply button.

 Test that your Traveler can fire arrows in all 4 directions.

 Do ice arrows build up on the edges of your worksheet? Rearrange your walls to absorb
them.

 If you have an arrow that does not move, check that the depiction in the New action in the
Traveler’s rules matches the depiction in the Move action in the ice arrow’s rules.

 If you get error messages from other agents on the worksheet saying that they do not know
how to respond to a “Hit” message, you must change the HitChaser rules to test that the ice
arrow is about to hit a Chaser and not some other agent. Add a condition that checks for the
Chaser agent by name rather than image to each HitChaser rule. Here is the upwards-facing

 Journey (Continued)

 Page 5

ice arrow rule:

 If your Chaser is not frozen by a direct hit, the problem may be that the ice arrow is next to

the Chaser and unfreezes it immediately after freezing it. How can you guarantee that an ice
arrow will not cause the Chaser to change rapidly back to unfrozen? Add an “Erase me”

action, , to each of the HitChaser rules so that the ice arrow sends a Hit
message to the Chaser and instantly disappears. Here is a completed rule from HitChaser:

 Now test that your Traveler can shoot in all 4 directions and can freeze and unfreeze a

Chaser with all 4 ice arrows.You may need to move the Traveler and the Chaser into
position in order to test each direction.

 Journey

 Page 1

Standards specific to the implementation of JOURNEY (Denoted with ()
Creativity and Innovation

 Students demonstrate creative thinking, construct knowledge, and develop innovative products and processes using technology. Students:

 Apply existing knowledge to generate new ideas, products, or processes:

 Design and develop games

 Design and develop computational science models

 Create original works as a means of personal or group expression.

 Design original games

 Model your local environment, e.g., ecology, economy

 Use models and simulations to explore complete systems and issues.

 Model scientific phenomena, e.g., predator / prey models

 Create visualizations

 Identify trends and forecast possibilities.

 Build predictive computational science models, e.g., how the pine beetle destroys the Colorado pine forest

 Build live feeds to scientific web pages (e.g, weather information), process and visualize changing information

Communication and Collaboration

Students use digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning

of others. Students:

 Interact, collaborate, and publish with peers, experts, or others employing a variety of digital environments and media:

 Students work in teams to build and publish their simulations as web pages containing java applets.

 Communicate information and ideas effectively to multiple audiences using a variety of media and formats.

 Effectively combine interactive simulations, text, images in web pages

 Develop cultural understanding and global awareness by engaging with learners of other cultures.

 Students and teachers from the four culturally diverse regions interact with each other

 Contribute to project teams to produce original works or solve problems.

 Define project roles and work collaboratively to produce games and simulations

Research and Information Fluency

 Students apply digital tools to gather, evaluate, and use information. Students:

 Plan strategies to guide inquiry.

 Explore web sites and identify interesting connections

 Journey (Continued)

 Page 2

 Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources and media.

 Find relevant related web-based information, compute derivate information

 Evaluate and select information sources and digital tools based on the appropriateness to specific tasks.

 Understand validity of information, e.g. Scientific journal information vs. Personal blogs

 Process data and report results.

 Write programs to access numerical information, define functions to process data and create output based on voice or plotting to represent data.

Critical Thinking, Problem Solving, and Decision Making

Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and

resources. Students:

 Identify and define authentic problems and significant questions for investigation.

 Define research questions and explore approach of exploration

 Plan and manage activities to develop a solution or complete a project.

 Outline sequence of exploratory steps

 Experience complete bottom-up and top-down design processes

 Employ algorithmic thinking for creating programs to solve problems

 Collect and analyze data to identify solutions and/or make informed decisions.

Collect data as time series, e.g., collect group size of predator and prey, export time series to excel, explore various types of graph representations, e.g., x(t),

y(t) or scatter y=f(x)

 Use multiple processes and diverse perspectives to explore alternative solutions.

 Experience and understand design trade-offs, e.g. Bottom-up vs. Top-down

Digital

Citizenship

Students understand human, cultural, and societal issues related to technology and practice legal and ethical behavior. Students:

 Advocate and practice safe, legal, and responsible use of information and technology.

 Learn how to use tools to locate resources, e.g., images with google image search, but understand copyright issues

 Exhibit a positive attitude toward using technology that supports collaboration, learning, and productivity.

 Stay in the flow, where design challenges match design skills

 Experience success through scaffolded game design activities

 Mentor other students

 Demonstrate personal responsibility for lifelong learning.

 Explore options of going beyond expected learning goals

 Exhibit leadership for digital citizenship.

 Journey (Continued)

 Page 3

 In a collaborative setting become a responsible producer of content for diverse audiences

Technology Operations and Concepts

 Students demonstrate a sound understanding of technology concepts, systems, and operations. Students:

 Understand and use technology systems.

 Know how to organize files and folders, launch and use applications on various platforms

 Select and use applications effectively and productively.

Know how to orchestrate a set of applications to achieve goals, e.g., make game and simulations using Photoshop (art), AgentSheets (programming), and

Excel (data analysis).

 Troubleshoot systems and applications.

 Debug games and simulations that are not working

 Transfer current knowledge to learning of new technologies.

 Reflect on fundamental skills at conceptual level. Explore different tools to achieve similar objectives.

