
 Sokoban

Sokoban Curriculum v2.0 Page 1 of 56 Scalable Game Design

You are a warehouse keeper (Sokoban) who is in a

maze. You must push boxes around the maze while

trying to put them in the designated locations. Only

one box may be pushed at a time, and boxes cannot

be pulled. When boxes are covering all of the

destinations, the level is complete.

Created by: Susan Miller, University of Colorado, School of Education

This curriculum has been designed as part of the Scalable Games Design project.

It was created using ideas from and portions of prior work completed by

Fred Gluck

This material is based upon work supported by the National Science Foundation under Grant No. DRL-1312129

and CNS-1138526. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

.

 Sokoban

Sokoban Curriculum v2.0 Page 2 of 56 Scalable Game Design

Lesson Objective:

 To create a game of Sokoban

 To explain and use the Computational Thinking Patterns listed below

Prerequisite Skills:
 Students are presumed to know the

following skills. Return to the Frogger

Lesson Plans for detailed instructions on

these skills.

 Create agents

 Basic agent behavior including:

 Key control

 Random movement

 Ending the game

Computational

Thinking

Patterns:

 Cursor Control

 Collision

 Polling

 Push

 Pull

Activity Description:

 Part 1: Create basic world (worksheet) and the agents

 Part 2: Program the Sokoban to move and push crates

 Part 3: Creating letter and number agents

 Part 4: Polling and ending the game

Length of Activity:

 Five 30-45 minute lessons, although some

students may advance more quickly

 Sokoban

Sokoban Curriculum v2.0 Page 3 of 56 Scalable Game Design

Table of Contents

Teacher Instructions: Part 1 – Create Worksheet and Agents

Student Handout 1A: Part 1 – Create Worksheet and Agents

Student Handout 1B: Part 1a - Create a Game

 Part 1b – Create Agents

 Part 1c – Create a Worksheet

Student Handout 1C: Agent Creation Models

Teacher Instructions: Part 2 – Understand Agents Behaviors

Student Handout 2: Part 2 – Understand Agents Behaviors

Teacher Instructions: Part 3 – Program the Sokoban to move

Student Handout 3: Part 3 – Program the Sokoban to move

Teacher Instructions: Part 4 – Program the Sokoban to push crates

Student Handout 4: Part 4 – Program the Sokoban to push crates

Teacher Instructions: Part 4 – The Destination

Student Handout 4: Part 4 – The Destination

Teacher Instructions: Part 6 – Creating letters and numbers

Student Handout 6: Part 6 – Creating letters and numbers

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 4 of 56 Scalable Game Design

Teacher Instructions: Part 7 – Incrementing numbers

Student Handout 7: Part 7 – Incrementing numbers

Teacher Instructions: Part 8 – Winning the Game

Student Handout 8a: Part 8 – Winning the Game

Student Handout 8b: Part 8 – Winning the Game

Student Handout 8c: Part 8 – Winning the Game

Student Handout 8d: Part 8 – Winning the Game

 Sokoban

Sokoban Curriculum v2.0 Page 5 of 56 Scalable Game Design

Vocabulary/Definitions

Absorb This is the opposite pattern of Generate. Instead of an

agent generating other agents, an agent absorbs a

flow of other agents in the absorption pattern (i.e. a

tunnel absorbing cars), making them ‘disappear’

Action the requested behavior of an agent if the conditions

are true

Agent a character in the game

Array a rectangular arrangement of agents

Broadcast controllers broadcast (or send out) a signal

Collision the situation when two agents physically collide.

Condition the situation that must be ‘true’ for an action to occur

Depiction a second image of the original agent. For example,

the Sokoban can have two depictions: what it usually

looks like, and what it looks like after it has been

squished

Generate the ability to create a new agent. To satisfy this

pattern, an agent is required to generate a flow of

other agents; for example, cars appearing from a

tunnel

Global Variable ... a variable accessible by all agents

Increment to increase by one

Method a set of rules to follow in a specific situation

Set programming code which assigns a value to a

simulation property

 Sokoban

Sokoban Curriculum v2.0 Page 6 of 56 Scalable Game Design

General Teaching Strategies1

Basic Philosophy

 The educational goal of these lessons is to learn and apply Computational Thinking

Patterns in the context of a familiar game. Emphasis on these Computational Thinking

Patterns is essential for student transfer of programming concepts between related games

and simulations.

 Every effort has been made to create instructions with an eye toward guided discovery.

Direct instruction has been used for those aspects where students are learning the code for

the first time; however, materials have been provided to ensure that students are

understanding the programming concepts, as opposed to simply copying code. Note that

for each curriculum guide, special materials have been designed for students who are new

to this program.

 Student materials are available for each portion of the game design. These materials are

intended to be used in addition to teacher materials, which provide prompts and

discussion points. Students may become frustrated with too little teacher support.

Students may lose out on conceptual understanding with too much teacher support.

Guided Discovery Process

 Model the process rather than just giving students the answer. Build the game on your

own, before trying it with your students to enable you to see possible struggling points.

 Have students work through problems on their own. Ask guiding questions or give

helpful suggestions, but provide only minimal assistance and only when needed to

overcome obstacles.

 Don’t fear group work! It is common for computer programmers to talk through

problems with one another, and to use code snippets found from other programs, and

1 This information is supported by research found in the following documents:

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010, June). Using scalable game design to teach

computer science from middle school to graduate school. In Proceedings of the fifteenth annual

conference on Innovation and technology in computer science education (pp. 224-228). ACM.

National Research Council. (2011). Learning science through computer games and simulations. (M. Hilton

& M. Honey, Eds.). Washington, DC: The National Academies Press.

National Research Council. (2014). STEM Integration in K-12 Education:: Status, Prospects, and an

Agenda for Research. (M. Honey, G. Pearson, & H. Schweingruber, Eds.). Washington, DC: The

National Academies Press.

Repenning, A., & Ioannidou, A. (2008, March). Broadening participation through scalable game design. In

ACM SIGCSE Bulletin (Vol. 40, No. 1, pp. 305-309). ACM.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 7 of 56 Scalable Game Design

other programmers. Talking through coding problems enables students to think more

critically about Computational Thinking Patterns, as well as the steps needed to solve a

problem. Additionally, seeing how others solved an issue with code helps students

realize that problems often have multiple solution strategies, and some that might be

more effective than others

 Recognize that programming is largely a process of trial and error, particularly when

first learning. It is helpful to encourage this mindset with your students.

Building Blocks

 Each project is designed to build on the prior one. Very little student support is provided

where expertise has already been created. Conversely, material or programming

techniques that are relatively new necessarily include more student support.

 Be sure to talk through the building blocks (especially for PacMan in the area of diffusion

and Hill Climbing) as these Computational Thinking Patterns will appear often in future

games and simulations.

 Remember that conceptual understanding takes time, and it may be necessary to explain

some concepts multiple times, using different examples in different situations, so that all

students can be successful.

Support Learning

 Research shows that game design is associated with engaged students, and engaged

students show higher levels on conceptual understanding. Allowing students to

personalize their games aids in this engagement and motivation.

 Coding may be difficult for some students, and all students are likely to be frustrated at

times when the code does not produce the expected results. Praise students for sticking

with the troubleshooting process and encourage them to share what they learned with

others.

 Be sure to communicate that the process is more important than the answer, and that

coding of a project often takes time. Do not place pressure on your students to ‘hurry up’

and resort to giving them the code. The process of figuring it out on his/her own will

result in much stronger conceptual understanding.

Differentiated Instruction

Note that there are many vocabulary words in this lesson that may be new for your

students. Take time to define those words. Using the words in context often will

reinforce their meaning for the students.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 8 of 56 Scalable Game Design

 Students who need a challenge: Some students with more fluency in programming may

finish this very quickly – be prepared for them to move on earlier than other students by

having student materials ready in advance.

 Students who need more assistance: Other students (especially those with no prior

programming experience with AgentSheets) may struggle a bit more. There are two

options for differentiated instruction. Consider the needs of the student and the class as

you decide which approach will work best.

Students who need a challenge: Some students with more fluency in programming may

finish this very quickly – be prepared for them to move on to the remaining parts.

Students who need more assistance: Other students may struggle a bit more. There are

two options for differentiated instruction. Consider the needs of the student and the class

as you decide which will work best.

Option 1: Pair the struggling student with an experienced student

Option 2: Provide the struggling student with all student handouts, which provide

more directed instruction steps

Note that Part 8 is particularly scaffolded within the handouts.

Time management issues: While students can be more engaged when they design their

own agents, some students can spend too much time on this design or find it frustrating.

Some handouts provides block images of each agent as portrayed in this lesson, which

can be used as general guidance on how to create the agent.

 Vocabulary for ELL Students: Absorb, Action, Agent, Array, Broadcast, Collision,

Condition, Depiction, Generate, Global Variable, Increment, Method, Set

 Note: Two student packets are available. The STANDARD packet is for students with

some basic knowledge of AgentSheets. The ALTERNATIVE packet is for students with

NO prior AgentSheets experience who may need more support. The ALTERNATIVE

packet should NOT be used for most students as it significantly reduces the active

thinking processes.

 Sokoban

Sokoban Curriculum v2.0 Page 9 of 56 Scalable Game Design

Teacher Instructions:

Part 1 – Create Worksheet and Agents

Introduce this project to the students by asking them if they know the game, Sokoban.

 Ask students to explain how the game works, and the rules of the game.

 You may choose to show a video or two of a typical Sokoban game

o https://www.youtube.com/watch?v=Ht4sC9PXCpw

o https://www.youtube.com/watch?v=Q2JczQVPjC0

If you show these videos, ask your students…

 What does the Sokoban have to do?

 How do you win the game?

 What specials features are part of the game?

 What are the triangles for?

 Why does the Sokoban have to walk around the box?

 Is there a strategy to win this game?

Explain that these are all design features that must be considered when planning a game. Now,

tell them that they will be designing their own Sokoban game.

As a class, briefly create a description of the Sokoban game similar to the one below.

 identify game objects, called agents, by locating nouns in the game description

You are a warehouse keeper (Sokoban) who is in a maze viewed from above. You must

push boxes around the maze while trying to put them in the designated locations. Only

one box may be pushed at a time, and boxes cannot be pulled. When boxes are covering

all of the destinations, the level is complete.

 categorize agents into user controlled agents (hint the game is called Sokoban), agents

that move or do other things by themselves (sometimes also called artificial intelligence

agents) and completely passive agents acting as props such as the street.

User controlled agents:

 Sokoban

https://www.youtube.com/watch?v=Ht4sC9PXCpw
https://www.youtube.com/watch?v=Q2JczQVPjC0

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 10 of 56 Scalable Game Design

Artificial Intelligence Agents:

 walls, boxes, destinations

Passive Agents:

 Floor Tiles

 identify agent interaction by locating verbs in the game description

You are a warehouse keeper (Sokoban) who is in a maze viewed from above. You must

push boxes around the maze while trying to put them in the designated locations. Only

one box may be pushed at a time, and boxes cannot be pulled. When boxes are covering

all of the destinations, the level is complete.

Give the students 10 minutes or so to work with a partner to discuss what steps will be

needed to create this game. If students have already completed Frogger and Journey, they

should have a pretty good idea of how to do this. Add new students to a pair of experienced

students who will be willing to talk through their thinking. Stress the need to think through

the programming process. At this point, there should not be hands on the keyboards (even

though some will want to jump right in to programming!).

This lesson is intended to be taught in a guided discovery manner. Be sure to give students

time to work on their own and figure things out using the program. Encourage students to

work together and talk through problems with one another. Emphasize that

troubleshooting is a normal and important part of programming.

Solicit and discuss possible ideas, without providing any evaluative feedback

(do not tell students if their ideas are good/bad, right/wrong). Once there has

been some class discussion, provide students with the handouts.

 STUDENT HANDOUT 1A simply provides the details needed for experienced students to

get started on their own. (Found on page 3 of the STANDARD student packet)

 STUDENT HANDOUT 1B Provides step-by-step instructions for creating a worksheet and

agents for students who are new to AgentSheets. (Found on page 3 of the ALTERNATIVE

student packet)

 STUDENT HANDOUT 1C shows possible designs for each agent, but encourage students to

create their own designs if time allows. (Found on page 4 of the STANDARD student

packet and page 7 of the ALTERNATIVE student packet)

 Sokoban

Sokoban Curriculum v2.0 Page 11 of 56 Scalable Game Design

Student Handout 1A:

Part 1 – Create Worksheet and Agents

In this project, you will create a worksheet with a Sokoban. This Sokoban will be tasked with

pushing a crate to a specific destination. Since you have already created a prior game, these

instructions will be less specific. If you are stuck, talk with the person next to you about ways to

correct the problem.

Tasks:

1. Create a new game called Sokoban

2. Create agents for the game. You will need the following agents:

 Sokoban

 Floor Tile

 Wall

 Crate

3. Create the worksheet for the game. Here

is the basic worksheet – you will have an

opportunity to make it more complex

later in the course.

4. Enable the Sokoban to be cursor

controlled, such that it moves

up/down/right/left with the arrow keys.

5. Prevent the Sokoban from walking

through walls.

 Sokoban

Sokoban Curriculum v2.0 Page 12 of 56 Scalable Game Design

Student Handout 1B: Part 1a – Create a game

Step 1 Create Game

Click on the new

game icon (far

left)

Step 2 Name the Game

Name it

Sokoban and

click OK

Step 3 Define Agent

Size

Do not change -

Click OK

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 13 of 56 Scalable Game Design

Student Handout 1B: Part 1b – Create agents

Step 4 Create Agent

Click on New

Agent

Name it

Sokoban

Click ok

Step 5 Edit Agent

Click Edit

Depiction

Click Clear to

erase the current

image.

 Click on

Color> Mask

Color>>

White to make

the white

background

sections see-

through

Step 6 Draw Sokoban

Click Done

Here is an example of one way to draw the

Sokoban. You can be creative. If you make a

mistake, use the eraser or click CLEAR to

clear the whole area.

Step 7 Draw remaining

agents

Sokoban Floor Tile

Wall Crate

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 14 of 56 Scalable Game Design

Student Handout 1B: Part 1c – Create Worksheet

The worksheet is the game space –

it is where the agents will perform their actions.

Step 8 Make the

worksheet

Click

File>>New

Worksheet

Step 9 Make the

worksheet

bigger

Notice it is big,

but not so big

that it fills up

the whole space.

Select Tool

Pencil Tool – places a single agent on the worksheet

Eraser – erases agents from the worksheet

Will be defined later

Will be defined later

Draw Rectangle – places agents in an array (rectangle)

Erase Rectangle – erases agents in an array

Will be defined later

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 15 of 56 Scalable Game Design

Step 10 Use the tools to

place items on

the worksheet.

Pencil: places

agents one at a

time

Filled in

Rectangle:

Places agents in

an array.

It is important that you do not draw over the

agents. Agents can stack on top of one another

which is not visible from a 2-dimensional

perspective. Take care to create a single layer of

agents.

This is what your worksheet

might look like at this point.

This is a good time to save the worksheet!

 Sokoban

Sokoban Curriculum v2.0 Page 16 of 56 Scalable Game Design

Student Handout 1C:

 Agent Creation Models

Use these as quick starting points for your own agent. They don’t have to

look exactly like the model!

 Sokoban

Sokoban Curriculum v2.0 Page 17 of 56 Scalable Game Design

This section is review for experienced students but

would be helpful for students new to programming.

Teacher Instructions:

Part 2 – Understanding Agent behaviors

At this point, students should have all six agents created and their worksheet created. Now

they are ready to give their agents behaviors.

Behaviors are thought of in this way…

IF…I have enough money…. THEN …. I can go to

the baseball game.

Sometimes there is more than one condition

IF…I have enough money and I have a ride…. THEN

…. I can go to the baseball game.

Sometimes there is more than one action

IF…I have enough money and I have a ride…. THEN

…. I can go to the baseball game and buy a soda.

The CONDITIONS box lists the conditions under which

the action will occur. The ACTIONS box lists the actions

which occur when the CONDITIONS are true. Student

Handout 2 is designed to give students practice in this

(Found on page 8 of the ALTERNATIVE student packet

– not included in the STANDARD student packet.). You

can give it to them to solve in pairs, or use it as a class activity.

 Sokoban

Sokoban Curriculum v2.0 Page 18 of 56 Scalable Game Design

Student Handout 2:

Understanding Conditions and Actions

Explain each condition or action below

Conditions:

A B C

D E

F G

Actions:

A B C

D E

 Sokoban

Sokoban Curriculum v2.0 Page 19 of 56 Scalable Game Design

Student Handout 2: ANSWER KEY

Understanding Conditions and Actions

Explain each condition or action below

Conditions:

A IF the agent sees a truck to the right B IF the agent is on top of the truck C IF there is nothing to the right

D If the agent hears HELLO E If the user presses the A key

F If the value is equal to 0 G If the agent is next to five or fewer trucks

Actions:

AMove to the right B Erase the agent C Reset the simulation

D Change the agent to this image E Speak this text

 Sokoban

Sokoban Curriculum v2.0 Page 20 of 56 Scalable Game Design

Teacher Instructions:

Part 3 – Program the Sokoban to move

- This section is review material for experienced students and will likely

not be needed. It is provided for classes with a higher proportion of

new students and is found on Page 9 of the ALTERNATIVE student

packet. If your class has a high number of new students, consider

using a breakout group to teach this information while experienced

students move ahead.

Ask the students to edit behaviors of the Sokoban. To do this, they will click on EDIT

BEHAVIOR on the SOKOBAN located in the GALLERY BOX.

Three boxes will appear as shown below: the CONDITIONS box, the ACTIONS box and

the BEHAVIOR box. (It is helpful for the students to lay them out in this order)

Use drop and drag to bring in conditions from the left side of the BEHAVIOR box, and

actions from the right side.

Ask students…

 How will we get the Sokoban to move? Can we use voice control? (Just tell the Sokoban

to move?) No, what else could we use?

A student will likely suggest using the keyboard. Introduce the term CURSOR CONTROL

such that you use the keyboard to move an Agent. Have students work together to determine

the proper condition and action to make the Sokoban move up.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 21 of 56 Scalable Game Design

After a couple of minutes of discussion, solicit ideas (correct code is shown below)

Have the students test their

rule. Click on the green

arrow (PLAY) to start the game. Have them press the up arrow to see if their Sokoban

moves up. Press the Red Square (STOP) to stop the game, and RESET to reset the

worksheet. When the student presses the up arrow, the Sokoban should move up.

Show students how to add rules by clicking NEW RULE at the bottom of the box. Also

show them how to DUPLICATE rules using the DUPLICATE button.

Have the students create the rest of the rules to move their

Sokoban up, down, right and left.

NOTE: Some students will likely find out at this point that they didn’t save their

worksheet. If that is the case, they will need a few minutes to recreate their

worksheet. You can avoid this by reminding everyone to save their worksheet

before testing their game!

Press the UP ARROW key
on the keyboard to get
the up arrow indicator.

Select a rule by

clicking in the

center of it. Click

on DUPLICATE

to duplicate the

rule. Click on

DELETE to

remove it.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 22 of 56 Scalable Game Design

When the students test the movement of the Sokoban, ask the students what happens when

the Sokoban gets to a wall? (Right now, the Sokoban can walk through

walls.) Ask students how they can prevent this.

Suggest the SEE condition if no one else suggests it. The correct code

for moving up is as follows:

The entire code for the Sokoban looks like this:

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 23 of 56 Scalable Game Design

COMMON MISTAKE:

In this case, the agent is being ‘told’…if I click the up, down, right and left arrow, then you

move up, down right and left.

If students have this mistake, use it as a class discussion for them to determine

why it’s wrong. Consider having them talk through (or act out) what it

occurring.

The rule should be,

if I click the up arrow,

you move up.

If I click the right arrow,

you move right.

They must each be their own, separate rule!

Thoughts on Troubleshooting:

Think about ways to remove yourself as a teacher from being the only problem solver…

Consider these prompts when students ask for help…

 What have you already tried?

 Have you consulted with a friend?

 Have you considered whether your rule order is correct?

Resist the urge to find their mistake or take over their computer and fix their program!

Use the proper terms for the Computational Thinking Patterns (such as Cursor Control) so

that students are comfortable with these terms.

 Sokoban

Sokoban Curriculum v2.0 Page 24 of 56 Scalable Game Design

Student Handout 3:

Part 3 – Program the Sokoban to move

Click on the agent to add behaviors to that agent

Step 1 Create behavior

for the Sokoban

Step 2: Cursor Control

for Sokoban

This makes the

Sokoban move

UP when you

push the UP

arrow. Create

the rest of the

rules for the

Sokoban

Step 3: Prevent the

Sokoban from

walking through

walls.

Create the rest

of the rules for

the Sokoban

Notice that the rule says IF I push the DOWN arrow, AND I

see a floor tile in the down direction, THEN I move down.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 25 of 56 Scalable Game Design

Teacher Instructions:

Part 4 – Programming the Sokoban to Push Crates

Gather the class to talk about the crates. Consider these prompts:

 What do the crates do?

 Where do they come from?

 Where do they go?

 How do they move

 How often do they travel on the street?

 What happens with the crates when they reach

their destination? Do the crates disappear?

By now your students should have a pretty good idea of what types of coding will be

necessary. Solicit ideas and allow students to consider both correct and incorrect

suggestions. Move students toward the idea that the Sokoban will PUSH the crates, but then

point out that there is no PUSH command. Remind experienced students (inform new

students) of how we can use the MAKE action to put a set of actions in motion.

IF I see a CRATE to the RIGHT, I should PUSH the CRATE to the RIGHT

To have the Sokoban push crates, we have to learn about a new behavior action: “Make”.

The Make action allows sending messages between agents, even back to yourself!

New Computational
Thinking Pattern: PUSH

When the Sokoban tries to
"push" a Crate, the Crate

will look ahead in the same
direction as the "push". If

the space ahead of the box
is clear (no Walls) the Crate
will signal the Sokoban to

move one space in the
"push" direction and the
Crate will also move one

space in the same direction.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 26 of 56 Scalable Game Design

Use these behaviors IN ADDITION to the existing behaviors

for the Sokoban.

Have the students test out their code. Ask them to push a crate. What happens?

They should get an error message that says, “Sorry, I am just a ‘crate’. I do not know how to
react to the message: ‘push_down’”

Again, prompt the students…

 Why are we getting that error message?

 What does the error message mean?

 How will we resolve it?

Again, allow students time to think through this problem –

do not give them the next step right away….

Once they’ve had a chance to talk through this new

problem, remind students of using a METHOD.

(METHODs were used in the polling for goals in the

Journey game.) Methods send messages to agents, telling

them what actions to take.

Make Action Box

METHOD
Methods are containers where
all of the rules go to perform
actions. We have been using
the While method so far in our
program, but now we will add
and use the On Method. The
On Method tells the agent
what to do when specific
messages are received. You
can tell the type of Method
you are looking at by looking at
the tab in the upper left corner
of Method area.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 27 of 56 Scalable Game Design

Thinking through pushing the crate…

Remind students that the agents will only do what they are told…they cannot choose to do

anything on their own.

So, ask the students what commands are needed to push a crate, and model the commands

they give. You can use a tissue box or a chair to model the behavior. Be sure to have some

‘Walls’ to work around.

For example…

When they say… Do this…

Push the crate Push the (tissue box) crate forward, but

don’t move.

Move up Move yourself, but not the crate

Push the crate (but there is a wall there) Bang into the wall, but don’t go through it

You want to push them to a solid understanding by modeling each spoken behavior. Make

them give you the conditions (for example, move forward if you see carpet in front of you).

This will be challenging and frustrating at times for some students. Take it step by step and

let all students participate in giving possible solutions.

Eventually you should get the students to agree on the following set2 of commands.

If you see carpet in front of you, move the crate forward. If the crate moves forward,

then you should take a step forward as well.

More specifically, these rules…

 If there is a crate in front of the Sokoban, and the “right arrow” button is pressed,

perform the action, “push_right”

 If the crate is told to perform the action “push_right”, the crate will look to see if

there is floor tile in front of the crate. If there is, the crate will move forward, and

then then tell the Sokoban to perform the action “move forward”.

 If the Sokoban is told to perform the action “move forward” the Sokoban moves

forward one step.

Provide students with Handout 4 (This handout is found on page 5 of the STANDARD student

packet and page 9 of the ALTERNATIVE student packet.)

2 Note that there are other possible solutions – encourage students to try out their solutions as

well.

 Sokoban

Sokoban Curriculum v2.0 Page 28 of 56 Scalable Game Design

Student Handout 4:

Part 4 – Programming the Sokoban to Push Crates

Click on the agent to add behaviors to that agent

Step

1

Enable the Sokoban

to push the crates.

This is the

behaviors in the UP

direction for the

Sokoban. Code the

rest of the

directions.

Step

2:

Create the Method

push_down for the

CRATE

Reminder: click

New Method

Step

3:

Create remaining

methods for

push_up, push_left

and push_right

No hints here!

Step

4:

Test your game You should not get any error messages.
Your crate should move in the proper direction.
Does your Sokoban move? Why not?

If you get any error messages, go back and check your
programming. Do not continue on until the program works as
expected at this point.

Step

5:

Change the

Sokoban rules so

that your Sokoban

moves down when

the crate is pushed

down.

Crate checks to see if a
Floor tile agent is below.
If there is a Floor tile
agent below the crate, it
sends a message back to
the Sokoban telling it to

move down and then the crate moves down.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 29 of 56 Scalable Game Design

Step

6:

Test your game The Sokoban does not know how to react to the message
(move_down) that it is receiving back from the crate;
therefore, you will see an error message from AgentSheets
when we run our game now!

Step

7:

Create the Method

move_down for the

SOKOBAN

Step

8:

Change the

Sokoban rules so

that your Sokoban

moves up when the

crate is pushed up.

What other rules

must be changed?

Look back to Step 5 for help on this.

Step

9:

Create the

remaining “Move”

methods

move_up

move_right

move_left

See Step 7 for help on this.

You are ready to move on once the following items work correctly…

 Does the Sokoban move in all directions over the Floor?

 Can the Sokoban push crates in all directions?

 Does the Sokoban also move in the same direction as the crate was pushed?

 Do the Walls block the Crates and Sokoban correctly?

 Sokoban

Sokoban Curriculum v2.0 Page 30 of 56 Scalable Game Design

Teacher Instructions:

Part 5 – The Destination

Ask the students what is missing from their Sokoban game… They should identify that they

need a way to win the game. In this portion of the lesson, students will create a destination agent

and change their rules to enable the Sokoban and the Crate to be on top of the destination tile.

Provide students with Student Handout 5 – the remaining

explanation is for clarity for the teacher

Student Handout 5 is found on page 7 of the STANDARD student packet, and page 12 of the

ALTERNATIVE student packet.

We will now create a Destination agent that can have other

agents pushed onto it.

Destination agent

Create and draw the Destination Agent: Create a new

agent called Destination, the same way you created the

Sokoban and the Walls. As you did when you created the Sokoban, draw the picture you’d like

to use to represent the destination.

Program Destination: Now we would normally add some behavior to our new agent, but in this

case there is nothing we need to program! This means that the destination will not actually

perform any actions in our program.

Currently our Sokoban can walk over floors without a problem, but cannot travel over

destinations. We now need to allow the Sokoban to move over destinations as well.

ACADEMIC LANGUAGE and
COMPUTATIONAL

THINKING PATTERNS
It is important to use the

proper terminology during
this discussion. As students

use words like create,
make, erase,

disappear…restate their
ideas using the terms

GENERATE and ABSORB.

http://sgd.cs.colorado.edu/wiki/File:SokobanDestinationDepictionDrawing.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 31 of 56 Scalable Game Design

When you’re done the Sokoban’s behavior editor should have the original four movement rules

for moving over Floor Tile agents and now four movement rules for moving over destinations

too!

Moving the crate over the Destination: We can push the crate over the Floor tiles, however it

will not currently move onto Destination agents and we will never be able to finish our game! It

is actually very easy to fix this behavior. Open the Crate behavior editor and find the On method

for "push_down", click on the If or Then labels of our rule (this should highlight the entire rule).

Now click the "duplicate" button, which will make an exact copy of the highlighted rule. Now in

our new duplicate rule, we just need to change the See action depiction to the Destination agent.

Here is a picture of the modified "push_down" method:

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorMoveAllDirectionsDest.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorCrateOnPushDownSeeTileSeeDestination.png

 Sokoban

Sokoban Curriculum v2.0 Page 32 of 56 Scalable Game Design

Student Handout 5: The Destination

You are tasked with creating the destination tile for Sokoban. Here are the

rules:

Step 1: Create missing agent (destination tile) and add it to the worksheet.

Step 2: Program the Sokoban to be able to move on the destination tile.

Hint: you will be adding rules, not deleting or changing existing rules

Step 3: Program the Crate to be able to move on the destination tile.

Hint: you will be adding rules to the method push_down, for example, not

deleting or changing existing rules. This is a great opportunity to test out the DUPLICATE

feature!

Step 4: Test the program. You are ready to move on when you can answer YES to these

questions:

 Try to move the Sokoban onto and off of the Destination in every direction

 Try to push a crate on and off the Destination in every direction

 Do the Sokoban and Crate move on and off the Destination correctly? If not, check the

Crate and Sokoban rules and retest.

 If the movement over the Destination is fine for the Sokoban and Crate, good work!

http://sgd.cs.colorado.edu/wiki/File:SokobanDestinationDepictionDrawing.png

 Sokoban

Sokoban Curriculum v2.0 Page 33 of 56 Scalable Game Design

Teacher Instructions:

Part 6 – Creating letters and

numbers

Notice that this game version is able to count the

number of steps taken by the Sokoban to move the

crate to the destination. Show this image to the

students and ask them which pieces they need to

program. They should come up with the following

needs:

Letters

 Have no behaviors

 Indicate where the step count is located

 Create letters S-T-E-P

Destinations

 Have no behaviors

 The Crate and Sokoban can move over Destinations

 If Crates cover all level Destinations the level is complete

Numbers

 Create numbers 0-1-2-3-4-5-6-7-8-9

 Increments by one every time the Sokoban takes a step

 Creates new number if needed

 Indicates to next Number when it needs to increment

Game Master

 Manages the incrementing of the step count

 Asks Crates to update their status

 If all Destinations are covered, indicates that the level

has been finished

Remind students of the
Controller Agent in

Journey. This is the same
role that the GAME

MASTER plays in Sokoban.

Remind students of how
the goals were

incremented by one when
polled in Journey.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 34 of 56 Scalable Game Design

In the STUDENT HANDOUT (found on page 8 of the STANDARD student packet and page 13 of

the ALTERNATIVE student packet), students will be directed to make the letters S-T-E-P as one

agent called Letter, with four depictions, Letter_S, Letter_T, etc.

Students will then be directed to make the numbers 0-1-2-3-4-5-6-7-8-9 as one agent called

Number, again with different depictions.

Students will then update their worksheet.

Tips and Tricks

We actually do not need to modify the original Letter or Number

depiction since we will not use it in our game, however it can be

helpful to modify it.

Making depictions that have meaningful names is a good

programming practice! When we use the "Letter_S" depiction of

the Letter agent we know what it should look like, however if we

just use "Letter" we would not know which letter it is referring to.

Change the MASK color to WHITE to make it transparent!

 Sokoban

Sokoban Curriculum v2.0 Page 35 of 56 Scalable Game Design

Student Handout 6

Part 6: Counting the steps

To count the steps in Sokoban, you first need to create agents that are letters and numbers.

Step 1: Create a letter agent

Create 4 depictions:

 Letter_S

 Letter_T

 Letter_E

 Letter _P

Step 2: Create a number agent

 Create 10 depictions for the numbers 0-9

Step 3: Modify worksheet

Add the word STEPS and add the digit 0 as

shown.

http://sgd.cs.colorado.edu/wiki/File:Zero.gif
http://sgd.cs.colorado.edu/wiki/File:One.gif
http://sgd.cs.colorado.edu/wiki/File:Two.gif
http://sgd.cs.colorado.edu/wiki/File:Three.gif
http://sgd.cs.colorado.edu/wiki/File:Four.gif
http://sgd.cs.colorado.edu/wiki/File:Five.gif
http://sgd.cs.colorado.edu/wiki/File:Six.gif
http://sgd.cs.colorado.edu/wiki/File:Seven.gif
http://sgd.cs.colorado.edu/wiki/File:Eight.gif
http://sgd.cs.colorado.edu/wiki/File:Nine.gif

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 36 of 56 Scalable Game Design

Step 4: Add "increment" Method to the Numbers behavior

Step 5: Add Rules to Numbers Agent "increment" Method:

We now need to add rules to the Method we just created. We will actually have eleven

rules, even though there are only ten numbers! Let's start with the first rule; if we see a

"Zero" depiction, we need to change it to a "One" depiction. Make your rule look like the

first rule in the following picture.

Use the other two rules from the picture as guides for how to make rules for the numbers 1 - 8.

What should happen if the current number is a "Nine" and we need to increment? We will need

two special rules for this case. Use the picture below for the two "Nine" rules.

http://sgd.cs.colorado.edu/wiki/File:SokobanDigitIncrementNineRules.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 37 of 56 Scalable Game Design

**Warning: If your counter is not on empty space (i.e. on the floor,

wall, etc.) you want to make sure that the last "if" is not "empty to the

left" but rather "sees floor to the left" or whatever you have the counter

on....

Fun Fact:

We are not actually "incrementing" any numbers with
our "increment" Method. We are updating Depictions

to represent incrementing a number. We are
simulating incrementing real numbers!

We used the "See A" Action for one of the rules. The
difference between the "See" and "See A" Actions is

that "See A" looks for any Agent regardless of the
Depiction, while the "See" Action looks for a specific

Depiction of an Agent.

We could program the same behavior using the
"See" action as we did using the "See A" action,

however it would require a separate rule for each
Numbers depiction!

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 38 of 56 Scalable Game Design

Teacher Instructions:

Part 7 – Incrementing

Numbers

Remind students of the Sokoban game, and how they used a Controller to count up the number

of remaining goals. When the remaining goals were zero, the game was over. They will use the

same setup here. This time, we will refer to the controller as the Game Master. The Game

Master Agent will play two roles:

 Increment the step count

 Determine when the current game

level has been finished

Ask the students to create and draw the

Game Master Agent: Create a new agent

called "Game_Master", the same way you

created the previous agents. Draw a picture

you’d like to use to represent the Game

Master.

Flashback to Journey

In this game, the Traveler had to

collect multiple goals before winning

the game. To determine if all the

goals were gone, we created a

Controller to poll the goals, which

increased the count by one, for each

goal remaining on the board.

Game Master Location

An interesting feature of the Game Master

agent is that it does not need to be visible to

the player, but it does need to be placed

within our Worksheet at a specific location.

To make it easier for us to see where we have

placed this agent, it is a good idea to use

some temporary or small depiction.

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 39 of 56 Scalable Game Design

Place the Game Master Agent to the right of the zero in the Worksheet

Question for students:

Why is it very important that a single Game Master agent is

placed to the Right of the Number agent that we previously

placed on the worksheet?

Answer: Because there will be a digit going to the left of the zero when the count

gets past nine. Also, because the code said look for the floor tile to the left…if we

place the game master there, the code will no longer work.

Students will now need to program the following actions:

When the Game Controller wants to update steps, he will look to see if there is a number to the

left, and if there is, the increment method should activate.

Game Master Behavior: New Method, called update_steps

Getting the Step Count to Increment

We now have the Game Master reacting to the "update_steps" message and we have the Number

reacting to "increment", but the numbers will still not increment when the Sokoban moves. To

add this behavior we have to modify our Sokoban behaviors.

Every time the Sokoban moves it should send an "update_steps" message to the Game Master

letting it know that a movement has occurred.

Give the students a couple of minutes to talk through this problem…

http://sgd.cs.colorado.edu/wiki/File:SokobanGMUpdateStepsMethod.png
http://sgd.cs.colorado.edu/wiki/File:SokobanNumberGMPosition.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 40 of 56 Scalable Game Design

How will they get the Sokoban agent to contact the Game Master agent.

The Sokoban agent will not be adjacent to the Game Master agent, so we can not use the "Make"

action to send a message. Instead we will use the "Broadcast" action that sends a message to all

Agents of a specified type and it does not matter where the receiving Agent is in relation to the

sender.

Sokoban "DOWN" movement with Broadcast added

Updating Other Sokoban Movements to Broadcast:

Now, add the same Broadcast action to the On Methods for "move_up", "move_right", and

"move_left".

The Sokoban needs to tell the Game Master that it has taken a step in two other cases: walking

over Floor and Destinations. Add the same Broadcast action used previously to the eight rules for

the other Sokoban movement. The picture below shows the updated rules for moving "DOWN"

over the Floor and Destinations.

Sokoban "DOWN" movement with Broadcast added

Provide students with Handout 7, found on page 11 of the STANDARD
student packet, and page 16 of the ALTERNATIVE student packet.

http://sgd.cs.colorado.edu/wiki/File:SokobanMoveDownBroadcastUpdateSteps.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorMoveDownBroadcastStep.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 41 of 56 Scalable Game Design

Student Handout:

Part 7 – Incrementing

Numbers

Step 1: Create a Game Master who will

 Increment the step count

 Determine when the current game

level has been finished

Place the Game Master Agent to the right of

the zero in the Worksheet

Step 2: When the Game Controller wants to update steps, he will look to see if there is a

number to the left, and if there is, the increment method should activate.

Flashback to Journey

In this game, the Traveler had to

collect multiple goals before winning

the game. To determine if all the

goals were gone, we created a

Controller to poll the goals, which

increased the count by one, for each

goal remaining on the board.

Game Master Location

An interesting feature of the Game Master

agent is that it does not need to be visible to

the player, but it does need to be placed

within our Worksheet at a specific location.

To make it easier for us to see where we have

placed this agent, it is a good idea to use

some temporary or small depiction.

http://sgd.cs.colorado.edu/wiki/File:SokobanNumberGMPosition.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 42 of 56 Scalable Game Design

Game Master Behavior: New Method, called update_steps

Step 3: Every time the Sokoban moves it should send an "update_steps" message to the Game

Master letting it know that a movement has occurred.

Broadcasting Sokoban Steps:

Let's add…

 the "Broadcast" action

to the…

 Sokoban

On…

 "move_down" Method.

Sokoban "DOWN" movement with Broadcast added

Step 4: Now, add the same Broadcast action to the On Methods for "move_up", "move_right",

and "move_left".

http://sgd.cs.colorado.edu/wiki/File:SokobanGMUpdateStepsMethod.png
http://sgd.cs.colorado.edu/wiki/File:SokobanMoveDownBroadcastUpdateSteps.png
http://sgd.cs.colorado.edu/wiki/File:BehaviorBroadcastActionDiagram.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 43 of 56 Scalable Game Design

Step 5: The Sokoban needs to tell the Game Master that it has taken a step in two other cases:

walking over Floor and Destinations. The picture below shows the updated rules for moving

"DOWN" over the Floor and Destinations.

Sokoban "DOWN" movement with Broadcast added

Step 6: Add the same Broadcast action used previously to the eight rules for the other Sokoban

movement.

Step 7: Test your game.

 When the Sokoban moves or pushes a Crate does the step count increase?

 If you go over nine steps does the step count increase correctly?

 If the answer is "No" to either of the above questions, check the behaviors for problems

and retest.

 If the step count is incrementing correctly (even if you had to change a few things and

retest), you did a super job!

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorMoveDownBroadcastStep.png

 Sokoban

Sokoban Curriculum v2.0 Page 44 of 56 Scalable Game Design

Teacher Instructions:

Part 8 – Winning the game

Talk with the students at this point.

 How do we win the game? (when there are no more crates on floor tiles, you win)

 How do we know if we won the game (have to count all the crates left on the floor)

 When we check each time to see if we won the game, do we use the old count of crates,

or do we start new? (we start new, with zero crates, and then we count up for each crate

still on the floor).

 Do we need to count all time (continuously)? No, we can count a certain number of

times per second

Now, go back through these same questions with the students and talk about the

programming:

 How do we win the game? (when there are no more crates on floor tiles, you win)

o We need a method to say if there are no more crates (@Free_Crates = 0) then you

win.

o Let’s call that method “check_crates”

 How do we know if we won the game (have to count all the crates left on the floor)

o Set the number of crates to zero

o Ask the crates if they are on a floor tile

o If they are on a floor tile, increase the number of crates by 1

o Let’s call that method “report”

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 45 of 56 Scalable Game Design

 When we check each time to see if we won the game, do we use the old count of crates,

or do we start new? (we start new, with zero crates, and then we count up for each crate

still on the floor).

o Set the number of crates to zero

 Do we need to count all time (continuously)? No, we can count a certain number of

times per second

o Let’s put in a condition that we will check every 0.2 seconds.

During your discussion, students will likely come up with the code, at least in concept.

Game Manager Code with Explanation

We don’t need to check for crates continuously, so we will be it every so often. In this example,

we did it once every 0.2 seconds, or five times a second.

Each time we check on the crates, we start our count from zero.

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMWhileFinal.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMWhileFinal.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 46 of 56 Scalable Game Design

We send out a broadcast message to the crates, asking them to report if they are on the floor tiles.

We tell the crates to run the method check_crates to

see if we won the game.

Game Master’s check-crates Method Code with Explanation

IF the crate count IS EQUAL TO zero You win – reset simulation

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMWhileFinal.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMWhileFinal.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMOnMethodCheckCrates.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 47 of 56 Scalable Game Design

Crate’s report Method Code with Explanation

IF the Crate is on the Floor Tile Count it by adding a crate to the Free_Crates count

By now, students have had significant practice with methods. Therefore, some will be more

ready for a challenge than others. As a result, there are FOUR Student Handouts for this section.

 Student Handout 8A: Gives basic explanation based on the questions you discussed

o Found on page 14 in the STANDARD student packet, and page 19 of the

ALTERNATIVE student packet.

 Student Handout 8B: Explains the steps of each code, but no code is shown

o Not included in the STANDARD student packet, and found on page 20 of the

ALTERNATIVE student packet.

 Student Handout 8C: Gives the beginnings of each code, and an explanation

o Not included in either student packet – have available for students who need it

 Student Handout 8D: Gives the full code

o Not included in either student packet – have available for students who need it

Start with Handout 8A for all students. Have copies of the other three handouts available for

those who need them. Students should not be made to feel badly if they need more help – that is

all part of the learning process.

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorCrateOnReport.png

 Sokoban

Sokoban Curriculum v2.0 Page 48 of 56 Scalable Game Design

Student Handout

Part 8A – Winning the game

Challenge yourself to do it on your own.

To finish programming your game, answer each question and produce the code:

 How do we win the game?

o Create a METHOD for the GAME MASTER that shows when you win.

 How do we know if we won the game

o Create a METHOD for the CRATES that tells you if they are still on the floor.

 When we check each time to see if we won the game, do we use the old count of crates,

or do we start new?

o Be sure your METHOD for the crates starts with the number of crates equal to

zero

 Do we need to count all time (continuously)?

o WHILE RUNNING, your Game Master should check to see if you won every 0.2

seconds.

Press Run and see if everything works correctly. Check

 When the Sokoban moves does the step count increment correctly?

 When the Sokoban pushes the Crate does the step count increment correctly?

 If you push all Crates over all Destinations does the level end?

If your answer to one of these is no, ask for Student Handout 8B for more hints. Note: There

should always be one Destination per Crate in the game levels.

Otherwise, if everything works correctly GREAT JOB! You have finished your own Sokoban

game! You can now go back and make any changes you want to make (like redrawing an agent,

redesigning your game level, adding other behaviors, etc.).

 Sokoban

Sokoban Curriculum v2.0 Page 49 of 56 Scalable Game Design

Student Handout

Part 8B – Winning the game

Need more help? That’s okay – here are some more

hints:

We need a method to say if there are no more crates (set a simulation property @Free_Crates =

0) then you win, and reset the game.

 Let’s call that method “check_crates”

We need a method to know if we won the game (have to count all the crates left on the floor)

 Set the number of crates to zero

 Ask the crates if they are on a floor tile

 If they are on a floor tile, increase the number of crates by 1

 Let’s call that method “report”

Let’s tell the Game Master that While Running, every 0.2 seconds, he should SET the number of

crates (@Free Crates) to zero, he should then BROADCAST to the Crates, asking for a “report”,

and finally, he should “check_crates” to see if you won.

Press Run and see if everything works correctly. Check

 When the Sokoban moves does the step count increment correctly?

 When the Sokoban pushes the Crate does the step count increment correctly?

 If you push all Crates over all Destinations does the level end?

If your answer to one of these is no, ask for Student Handout 8C for more hints. Note: There

should always be one Destination per Crate in the game levels.

Otherwise, if everything works correctly GREAT JOB! You have finished your own Sokoban

game! You can now go back and make any changes you want to make (like redrawing an agent,

redesigning your game level, adding other behaviors, etc.).

 Sokoban

Sokoban Curriculum v2.0 Page 50 of 56 Scalable Game Design

Student Handout

Part 8C – Winning the game

Need even more help? That’s still okay – here is the

piece of each code with explanations.

Game Manager Code with Explanation

Every 0.2 seconds set the crates to zero

 Ask the crates to REPORT back

 Run CHECK_CRATES to see if

 the game is over.

Game Master’s check-crates Method Code with Explanation

IF the crate count IS EQUAL TO zero You win – reset simulation

Crate’s report Method Code with Explanation

IF the Crate is on the Floor Tile Count it by adding a crate to the @Free_Crates

count

Press Run and see if everything works correctly. Check

 When the Sokoban moves does the step count increment correctly?

 When the Sokoban pushes the Crate does the step count increment correctly?

 If you push all Crates over all Destinations does the level end?

If your answer to one of these is no, ask for Student Handout 8D for more hints. Note: There

should always be one Destination per Crate in the game levels.

Otherwise, if everything works correctly GREAT JOB! You have finished your own Sokoban

game! You can now go back and make any changes you want to make (like redrawing an agent,

redesigning your game level, adding other behaviors, etc.).

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMWhileFinal.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMOnMethodCheckCrates.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorCrateOnReport.png

 Sokoban

Sokoban Curriculum v2.0 Page 51 of 56 Scalable Game Design

Student Handout

Part 8D – Winning the game

Need even more help? That’s still okay – here is the code with explanations.

Be sure to talk with a friend if you still have questions.

Game Manager Code

Every 0.2 seconds set the crates to zero

 Ask the crates to REPORT back

 Run CHECK_CRATES to see if

 the game is over.

Game Master’s check-crates Method Code with Explanation

IF the crate count IS EQUAL TO zero You win – reset simulation

Crate’s report Method Code with Explanation

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMWhileFinal.png
http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorGMOnMethodCheckCrates.png

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 52 of 56 Scalable Game Design

IF the Crate is on the Floor Tile Count it by adding a crate to the @Free_Crates count

Press Run and see if everything works correctly. Check

 When the Sokoban moves does the step count increment correctly?

 When the Sokoban pushes the Crate does the step count increment correctly?

 If you push all Crates over all Destinations does the level end?

If your answer to one of these is no, go back to the related section and see what you might have

done wrong. Note: There should always be one Destination per Crate in the game levels.

Otherwise, if everything works correctly GREAT JOB! You have finished your own Sokoban

game! You can now go back and make any changes you want to make (like redrawing an agent,

redesigning your game level, adding other behaviors, etc.).

http://sgd.cs.colorado.edu/wiki/File:SokobanBehaviorCrateOnReport.png

 Sokoban

Sokoban Curriculum v2.0 Page 53 of 56 Scalable Game Design

End of Unit Review Sheet - Sokoban

A) The main computational thinking patterns we reviewed were:

1) Cursor Control: intentionally moving an agent.

a. Using keyboard keys to move an agent.

b. Example is moving the Sokoban.

2) Collision: when 2 agents collide (run into each other).

a. Use the “See” condition

b. Use the “Stacked” condition, OR

c. Use the “Next to” condition.

d. Example: Winning the game by placing the crate on the destination.

3) Broadcasting: is when we “shout out” to all agents of a certain type requesting

them to execute a specific method.

a. Use the “broadcast” action in AgentSheets.

b. Example is the broadcast to the Controller - the method check_in” to

check in with the crates to see if they are on the destination.

B) The main NEW computational thinking patterns we learned were:

1) Push: moving an object and then telling the agent doing the pushing to move as

well.

a. Example: The Sokoban pushed the crate.

C) Other concepts we covered in AgentSheets are:

1) Incrementing Numbers

a. Thinking about how numbers change

b. Learning what’s special about the digit 9

2) Using Incrementing Numbers to count steps

3) Calling methods to do special tasks

4) Troubleshooting the simulation, and considering rule order.

5) Using sounds and messages in the game.

6) Timing our actions using the “Once every” condition.

 Sokoban

Sokoban Curriculum v2.0 Page 54 of 56 Scalable Game Design

ISTE Standards3 specific to the implementation of Sokoban (Denoted with ())
Creativity and Innovation

 Students demonstrate creative thinking, construct knowledge, and develop innovative products and processes using technology. Students:

 Apply existing knowledge to generate new ideas, products, or processes:

 Design and develop games

 Design and develop computational science models

 Create original works as a means of personal or group expression.

 Design original games

 Model your local environment, e.g., ecology, economy

 Use models and simulations to explore complete systems and issues.

 Model scientific phenomena, e.g., predator / prey models

 Create visualizations

 Identify trends and forecast possibilities.

 Build predictive computational science models, e.g., how the pine beetle destroys the Colorado pine forest

 Build live feeds to scientific web pages (e.g, weather information), process and visualize changing information

Communication and Collaboration

Students use digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning of others.

Students:

 Interact, collaborate, and publish with peers, experts, or others employing a variety of digital environments and media:

 Students work in teams to build and publish their simulations as web pages containing java applets.

 Communicate information and ideas effectively to multiple audiences using a variety of media and formats.

 Effectively combine interactive simulations, text, images in web pages

 Develop cultural understanding and global awareness by engaging with learners of other cultures.

 Students and teachers from the four culturally diverse regions interact with each other

 Contribute to project teams to produce original works or solve problems.

 Define project roles and work collaboratively to produce games and simulations

Research and Information Fluency

3 ISTE Standards for Students (ISTE Standards•S) are the “standards for evaluating the skills and knowledge students need to learn effectively and live
productively in an increasingly global and digital world.” http://www.iste.org/standards/standards-for-students

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 55 of 56 Scalable Game Design

 Students apply digital tools to gather, evaluate, and use information. Students:

 Plan strategies to guide inquiry.

 Explore web sites and identify interesting connections

 Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources and media.

 Find relevant related web-based information, compute derivate information

 Evaluate and select information sources and digital tools based on the appropriateness to specific tasks.

 Understand validity of information, e.g. Scientific journal information vs. Personal blogs

 Process data and report results.

 Write programs to access numerical information, define functions to process data and create output based on voice or plotting to represent data.

Critical Thinking, Problem Solving, and Decision Making

Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. Students:

 Identify and define authentic problems and significant questions for investigation.

 Define research questions and explore approach of exploration

 Plan and manage activities to develop a solution or complete a project.

 Outline sequence of exploratory steps

 Experience complete bottom-up and top-down design processes

 Employ algorithmic thinking for creating programs to solve problems

 Collect and analyze data to identify solutions and/or make informed decisions.

Collect data as time series, e.g., collect group size of predator and prey, export time series to excel, explore various types of graph representations, e.g., x(t), y(t) or scatter

y=f(x)

 Use multiple processes and diverse perspectives to explore alternative solutions.

 Experience and understand design trade-offs, e.g. Bottom-up vs. Top-down

Digital

Citizenship

Students understand human, cultural, and societal issues related to technology and practice legal and ethical behavior. Students:

 Advocate and practice safe, legal, and responsible use of information and technology.

 Learn how to use tools to locate resources, e.g., images with google image search, but understand copyright issues

 Exhibit a positive attitude toward using technology that supports collaboration, learning, and productivity.

 Stay in the flow, where design challenges match design skills

 Experience success through scaffolded game design activities

 Mentor other students

 Sokoban (Continued)

Sokoban Curriculum v2.0 Page 56 of 56 Scalable Game Design

 Demonstrate personal responsibility for lifelong learning.

 Explore options of going beyond expected learning goals

 Exhibit leadership for digital citizenship.

 In a collaborative setting become a responsible producer of content for diverse audiences

Technology Operations and Concepts

 Students demonstrate a sound understanding of technology concepts, systems, and operations. Students:

 Understand and use technology systems.

 Know how to organize files and folders, launch and use applications on various platforms

 Select and use applications effectively and productively.

Know how to orchestrate a set of applications to achieve goals, e.g., make game and simulations using Photoshop (art), AgentSheets (programming), and Excel (data

analysis).

 Troubleshoot systems and applications.

 Debug games and simulations that are not working

 Transfer current knowledge to learning of new technologies.

 Reflect on fundamental skills at conceptual level. Explore different tools to achieve similar objectives.

